npbr: A Package for Nonparametric Boundary Regression in R

$\begin{array}{cc} \mbox{Abdelaati Daouia}^1 & \mbox{Thibault Laurent}^{1,2} \\ & \mbox{Hohsuk Noh}^3 \end{array}$

¹TSE: Toulouse School of Economics, University of Toulouse Capitole, France ²CNRS ³Sookmyung Women's University

useR!2018 13th July 2018, Brisbane, Australia

Thibault LAURENT

Toulouse School of Economics, CNRS

What does "boundary regression" mean ?

Theory of production (economics)

- X: input
- Y: output
- n observations $(x_1, y_1), \dots, (x_n, y_n)$
- Def: maximum producible quantity of Y for any given quantity of X
- φ: boundary (or frontier)

Thibault LAURENT

Nonparametric Boundary Regression in R

Toulouse School of Economics, CNRS

Example of data

- Annual sport records: data("records")
- European air controllers: data("air")
- French postal services: data("post")

Constrained boundary regression

Unconstrained: method = "u"

- Monotone: method = "m"
- Monotone and concave: method = "mc"

Thibault LAURENT

Nonparametric Boundary Regression in R

Toulouse School of Economics, CNRS

Parametric model: polynomial estimators

- Model structure: $\varphi_{\theta}(x) = \theta_0 + \theta_1 x + \ldots + \theta_p x^p$
- Optimization problem: Find θ̂ = (θ̂₀,...,θ̂_p) s.t. that φ_{θ̂} envelopes the full data and minimizes the area under its graph (Hall, 1998)

- Choose p which minimizes the AIC/BIC (Daouia, 2015)
 - Easily implemented, but no constained version

Thibault LAURENT

Nonparametric model: FDH, DEA

- Nonparametric: model structure is not specified a priori but is instead determined from data
- Example: Free Disposal Hull (Deprins, Simar and Tulkens, 1984) or Data Envelopment Analysis (Farrell, 1957)

 Very famous and popular in the economic litterature, but too sensitive to the extreme values

Thibault LAURENT

Nonparametric model: Local maximum frontier estimators

•
$$\tilde{\varphi}(x) = \max_{i=1,\dots,n} y_i \mathbf{1}_{\{|x_i-x| \le h\}}$$
 (Gijbels and Peng, 2000)

 A data-driven rule for selecting h: package np (Li, Lin and Racine, 2013)

No constrained version and h should depend on x

Thibault LAURENT

Nonparametric Boundary Regression in R

Toulouse School of Economics, CNRS

Nonparametric model: Localized linear fitting

- $\hat{\varphi}_{n,LL}(x) = \min\{z : \text{there exists } \theta \text{ s.t. } y_i \leq z + \theta(x_i x) \text{ for all } i \text{ s.t. } x_i \in (x h, x + h)\}, \text{ (Hall et al., 1998)}$
- Optimal h: Hall and Park (2004)

No constained version

Thibault LAURENT

Nonparametric model: Quadratic (or Cubic) spline fitting

Daouia et al. (2016)

- Denote a partition of [a, b] by $a = t_0 < t_1 < ... < t_{k_n} = b$, with $a = \min_i x_i$ and $b = \max_i x_i$ by considering the j/k_n th quantiles $t_j = x_{[jn/k_n]}$ of the distinct values of x_i for $j = 1, ..., k_n 1$
- Let N = k_n+2 and π(x) = (π₀(x),...,π_{N-1}(x))[⊤] be the vector of normalized B-splines of order 2 (or 3) based on {t_i}
- \$\hlpha_n(x) = \pi(x)^\T \hlpha\$, where \$\hlpha\$ minimizes the same objective function as \$\hlpha\$ subject to the same envelopment constraints and the additional monotonicity constraints \$\pi'(t_j)^\T \alpha ≥ 0\$, \$j = 0, 1, ..., k_n\$, with \$\pi'\$ being the derivative of \$\pi\$.
- Number of inter-knot segments k_n : AIC or BIC

Toulouse School of Economics, CNRS

Quadratic spline fitting

- Unconstrained $(k_n = 3)$
- Monotone $(k_n = 2)$
- Monotone and concave $(k_n = 1)$

Thibault LAURENT

Package on CRAN

npbr: Nonparametric Boundary Regression

A variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They cover robust approaches to outliers as well as data envelopment techniques based on piecewise polynomials, allows for Monte Carlo comparisons among these different estimation methods. Its use is illustrated via a number of empirical applications and simulated examples.

Version:	1.6
Depends:	$R (\geq 3.3.1)$, graphics, stats, utils
Imports:	Benchmarking, np, guadprog, Rglpk ($\geq 0.6-2$), splines
Published:	2017-08-08
Author:	Abdelaati Daouia, Thibault Laurent, Hohsuk Noh
Maintainer:	Thibault Laurent <thibault.laurent at="" univ-tlse1.fr=""></thibault.laurent>
License:	<u>GPL-2</u> <u>GPL-3</u> [expanded from: GPL (\geq 2)]
NeedsCompilation	yes
Citation:	npbr citation info
CRAN checks:	npbr results
Downloads:	
Reference manual:	npbr.pdf
Vignettes:	Non parametric
Package source:	npbr 1.6.tar.gz
Windows hinarios.	n douol, nubri 1.6 sin, n nologogo, nubri 1.6 sin, n oldnol, nubri 1.6

Windows binaries: r-devel: <u>npbr 1.6.zip</u>, r-release: <u>npbr 1.6.zip</u>, r-oldrel: <u>npbr 1.6.zip</u> OS X binaries: r-release: not available, r-oldrel: not available Old sources: <u>npbr archive</u>

Linking:

Please use the canonical form https://CRAN.R-project.org/package-npbr to link to this page.

On MAC OS: install the glpk library outside of R, using homebrew

Thibault LAURENT

Toulouse School of Economics, CNRS

npbr functions

Function	Description	Reference
dea_est	DEA, FDH	Farrell (1957), Deprins et al. (1984),
-	and linearized FDH	Hall and Park (2002)
loc_est	Local linear fitting	Hall et al. (1998), Hall and Park (2004)
loc_est_bw	Bandwidth choice	Hall and Park (2004)
	for local linear fitting	
poly_est	Polynomial estimation	Hall (1998)
poly_degree	Optimal polynomial	Daouia et al. (2015)
	degree selection	
dfs_momt	Moment type estimation	Daouia et al. (2010), Dekkers et al. (1989)
dfs_pick	Pickands type estimation	Daouia et al. (2010), Dekkers et al. (1989)
rho_momt_pick	Conditional tail	Daouia et al. (2010),
-	index estimation	Dekkers et al. (1989)
kopt_momt_pick	Threshold selection for	Daouia et al. (2010)
	moment/Pickands frontiers	
dfs_pwm_regul	Nonparametric frontier	Daouia et al. (2012)
	regularization	
loc_max	Local constant estimation	Gijbels and Peng (2000)
pick_est	Local extreme-value estimation	Gijbels and Peng (2000)
quad_spline_est	Quadratic spline fitting	Daouia et al. (2015)
quad_spline_kn	Knot selection for	Daouia et al. (2015)
	quadratic spline fitting	
cub_spline_est	Cubic spline fitting	Daouia et al. (2015)
cub_spline_kn	Knot selection for	Daouia et al. (2015)
	cubic spline fitting	
kern_smooth	Nonparametric kernel	Parmeter and Racine (2013),
	boundary regression	Noh (2014)
kern_smooth_bw	Bandwidth choice for	Parmeter and Racine (2013),

Thibault LAURENT

Toulouse School of Economics, CNRS

Usage

```
poly_est(xtab, ytab, x, deg, control =
list("tm_limit" = 700))
```

- xtab: a numeric vector containing the observed inputs x_1, \ldots, x_n .
- ytab: a numeric vector of the same length as xtab containing the observed outputs y₁,..., y_n.
- x: a numeric vector of evaluation points in which the estimator is to be computed.
- deg: an integer (polynomial degree).
- control: a list of parameters to the GLPK solver.

Example of use

input

Thibault LAURENT

Conclusion

Available on CRAN

- Article published in Journal of Statistical Software (2017), http://dx.doi.org/10.18637/jss.v079.i09
- Numerical illustrations given in the article: cubic spline fitting seems to be the best method whatever the shape of the data
- Hope to see you in UseR!2019, Toulouse, France, next year

Toulouse School of Economics, CNRS

Thibault LAURENT