npbr: A Package for Nonparametric Boundary Regression in R

Abdelaati Daouia1 Thibault Laurent1,2
Hohsuk Noh3

1TSE: Toulouse School of Economics, University of Toulouse Capitole, France
2CNRS 3Sookmyung Women’s University

useR!2018
13th July 2018, Brisbane, Australia
What does “boundary regression” mean?

Theory of production (economics)
- X: input
- Y: output
- \(n \) observations \((x_1, y_1), \ldots, (x_n, y_n)\)
- Def: maximum producible quantity of \(Y \) for any given quantity of \(X \)
- \(\phi \): boundary (or frontier)
Example of data

- Annual sport records: `data("records")`
- European air controllers: `data("air")`
- French postal services: `data("post")`
Constrained boundary regression

- **Unconstrained:** `method = "u"`
- **Monotone:** `method = "m"`
- **Monotone and concave:** `method = "mc"`
Parametric model: polynomial estimators

- Model structure: $\varphi_\theta(x) = \theta_0 + \theta_1 x + \ldots + \theta_p x^p$
- Optimization problem: Find $\hat{\theta} = (\hat{\theta}_0, \ldots, \hat{\theta}_p)$ s.t. that $\varphi_{\hat{\theta}}$ envelops the full data and minimizes the area under its graph (Hall, 1998)

Choose p which minimizes the AIC/BIC (Daouia, 2015)
- Easily implemented, but no constrained version
Overview of the methods implemented in npbr

Presentation of the package npbr

Nonparametric model: FDH, DEA

- Nonparametric: model structure is not specified \textit{a priori} but is instead determined from data
- Example: Free Disposal Hull (Deprins, Simar and Tulkens, 1984) or Data Envelopment Analysis (Farrell, 1957)

- Very famous and popular in the economic literature, but too sensitive to the extreme values
Nonparametric model: Local maximum frontier estimators

- \(\tilde{\phi}(x) = \max_{i=1, \ldots, n} y_i 1\{ |x_i - x| \leq h \} \) (Gijbels and Peng, 2000)
- A data-driven rule for selecting \(h \): package \texttt{np} (Li, Lin and Racine, 2013)

- No constrained version and \(h \) should depend on \(x \)
Nonparametric model: Localized linear fitting

- \(\hat{\phi}_{n,LL}(x) = \min \{ z : \text{there exists } \theta \text{ s.t. } y_i \leq z + \theta(x_i - x) \text{ for all } i \text{ s.t. } x_i \in (x - h, x + h) \} \), (Hall et al., 1998)
- Optimal \(h \): Hall and Park (2004)

- No constrained version
Nonparametric model: Quadratic (or Cubic) spline fitting

Daouia et al. (2016)

- Denote a partition of \([a, b]\) by \(a = t_0 < t_1 < \ldots < t_{k_n} = b\), with \(a = \min_i x_i\) and \(b = \max_i x_i\) by considering the \(j/k_n\)th quantiles \(t_j = x[jn/k_n]\) of the distinct values of \(x_i\) for \(j = 1, \ldots, k_n - 1\).

- Let \(N = k_n + 2\) and \(\pi(x) = (\pi_0(x), \ldots, \pi_{N-1}(x))^\top\) be the vector of normalized B-splines of order 2 (or 3) based on \(\{t_j\}\).

- \(\hat{\phi}_n(x) = \pi(x)^\top \hat{\alpha}\), where \(\hat{\alpha}\) minimizes the same objective function as \(\tilde{\alpha}\) subject to the same envelopment constraints and the additional monotonicity constraints \(\pi'(t_j)^\top \alpha \geq 0\), \(j = 0, 1, \ldots, k_n\), with \(\pi'\) being the derivative of \(\pi\).

- Number of inter-knot segments \(k_n\): AIC or BIC.
Quadratic spline fitting

- Unconstrained \((k_n = 3)\)
- Monotone \((k_n = 2)\)
- Monotone and concave \((k_n = 1)\)
Overview of the methods implemented in `npbr` Presentation of the package `npbr`

Package on CRAN

A variety of functions for the best known and most innovative approaches to nonparametric boundary estimation. The selected methods are concerned with empirical, smoothed, unrestricted as well as constrained fits under both separate and multiple shape constraints. They cover robust approaches to outliers as well as data envelopment techniques based on piecewise polynomials, splines, local linear fitting, extreme values and kernel smoothing. The package also seamlessly allows for Monte Carlo comparisons among these different estimation methods. Its use is illustrated via a number of empirical applications and simulated examples.

Version: 1.6
Depends: R (≥ 3.3.1), graphics, stats, utils
Imports: Benchmarking, np, quadprog, Rglpk (≥ 0.6-2), splines
Published: 2017-06-08
Author: Abdelati Daouia, Thibault Laurent, Hohsuk Noh
Maintainer: Thibault Laurent <thibault.laurent at univ-tlse1.fr>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
Citation: npbr citation info
CRAN checks: npbr results

On MAC OS: install the glpk library outside of R, using homebrew

(brew install glpk)
Overview of the methods implemented in npbr

Presentation of the package npbr

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>dea_est</td>
<td>DEA, FDH and linearized FDH</td>
<td>Farrell (1957), Deprins et al. (1984), Hall and Park (2002)</td>
</tr>
<tr>
<td>loc_est</td>
<td>Local linear fitting</td>
<td>Hall et al. (1998), Hall and Park (2004)</td>
</tr>
<tr>
<td>loc_est_bw</td>
<td>Bandwidth choice for local linear fitting</td>
<td>Hall and Park (2004)</td>
</tr>
<tr>
<td>poly_est</td>
<td>Polynomial estimation</td>
<td>Hall (1998)</td>
</tr>
<tr>
<td>poly_degree</td>
<td>Optimal polynomial degree selection</td>
<td>Daouia et al. (2015)</td>
</tr>
<tr>
<td>dfs_momt</td>
<td>Moment type estimation</td>
<td>Daouia et al. (2010), Dekkers et al. (1989)</td>
</tr>
<tr>
<td>dfs_pick</td>
<td>Pickands type estimation</td>
<td>Daouia et al. (2010), Dekkers et al. (1989)</td>
</tr>
<tr>
<td>rho_momt_pick</td>
<td>Conditional tail index estimation</td>
<td>Daouia et al. (2010), Dekkers et al. (1989)</td>
</tr>
<tr>
<td>kopt_momt_pick</td>
<td>Threshold selection for moment/Pickands frontiers</td>
<td>Daouia et al. (2010)</td>
</tr>
<tr>
<td>dfs_pwm_regul</td>
<td>Nonparametric frontier regularization</td>
<td>Daouia et al. (2012)</td>
</tr>
<tr>
<td>loc_max</td>
<td>Local constant estimation</td>
<td>Gijbels and Peng (2000)</td>
</tr>
<tr>
<td>pick_est</td>
<td>Local extreme-value estimation</td>
<td>Gijbels and Peng (2000)</td>
</tr>
<tr>
<td>quad_spline_est</td>
<td>Quadratic spline fitting</td>
<td>Daouia et al. (2015)</td>
</tr>
<tr>
<td>quad_spline_kn</td>
<td>Knot selection for quadratic spline fitting</td>
<td>Daouia et al. (2015)</td>
</tr>
<tr>
<td>cub_spline_est</td>
<td>Cubic spline fitting</td>
<td>Daouia et al. (2015)</td>
</tr>
<tr>
<td>cub_spline_kn</td>
<td>Knot selection for cubic spline fitting</td>
<td>Daouia et al. (2015)</td>
</tr>
<tr>
<td>kern_smooth</td>
<td>Nonparametric kernel boundary regression</td>
<td>Parmeter and Racine (2013), Noh (2014)</td>
</tr>
<tr>
<td>kern_smooth_bw</td>
<td>Bandwidth choice for nonparametric kernel boundary</td>
<td>Parmeter and Racine (2013), Noh (2014)</td>
</tr>
</tbody>
</table>
poly_est(xtab, ytab, x, deg, control = list("tm_limit" = 700))

- **xtab**: a numeric vector containing the observed inputs x_1, \ldots, x_n.
- **ytab**: a numeric vector of the same length as `xtab` containing the observed outputs y_1, \ldots, y_n.
- **x**: a numeric vector of evaluation points in which the estimator is to be computed.
- **deg**: an integer (polynomial degree).
- **control**: a list of parameters to the GLPK solver.
Example of use

```R
R> require("npbr")
R> data(air)
R> x_air <- seq(min(air$xtab), max(air$xtab),
+ length.out = 101)
R> kn <- cub_spline_kn(air$xtab, air$ytab,
+   method = "mc", type = "BIC")
R> y_est <- cub_spline_est(air$xtab, air$ytab,
+   x_air, kn = kn, method = "mc")
R> plot(x_air, y_cub_air_mc, lwd = 3, type = "l",
+   xlab = "input", ylab = "output")
R> points(air$xtab, air$ytab, pch = 16)
```
Conclusion

- Available on CRAN
- Article published in Journal of Statistical Software (2017), http://dx.doi.org/10.18637/jss.v079.i09
- Numerical illustrations given in the article: cubic spline fitting seems to be the best method whatever the shape of the data
- Hope to see you in UseR!2019, Toulouse, France, next year