Ce document a été généré avec l’outil R Markdown. Le code R et les données qui ont été utilisées sont ainsi mis à disposition et permettent donc la reproductibilité des résultats obtenus.

Par ailleurs, le document est mis à jour automatiquement chaque jour. Pour consulter les archives, cliquer ici.

Source de données utilisées:

Questions de recherche:

En fonction des réponses aux questions précédentes :

Packages et fonctions locales à charger:

library(cartogram)
library(cartography)
## Warning in fun(libname, pkgname): rgeos: versions of GEOS runtime 3.9.0-CAPI-1.16.2
## and GEOS at installation 3.8.0-CAPI-1.13.1differ
library(forecast)
library(kableExtra)
library(rgdal)
library(tidyverse)
library(vistime)
library(zoo)
source("fonctions.R")

Version de R utilisée:

R.version
##                _                           
## platform       x86_64-pc-linux-gnu         
## arch           x86_64                      
## os             linux-gnu                   
## system         x86_64, linux-gnu           
## status                                     
## major          4                           
## minor          0.4                         
## year           2021                        
## month          02                          
## day            15                          
## svn rev        80002                       
## language       R                           
## version.string R version 4.0.4 (2021-02-15)
## nickname       Lost Library Book

1 Données hospitalières relatives à l’épidémie de COVID-19

1.1 Présentation des données

1.1.1 Données par département

Dans un premier temps, on met à jour les données tous les jours de façon automatique.

# Date du jour pour actualiser les données:
to_day <- Sys.Date()
my_url <- "https://www.data.gouv.fr/fr/datasets/r/6fadff46-9efd-4c53-942a-54aca783c30c"
if (!file.exists(paste0(getwd(), "/data/", to_day, ".csv"))) {
    download.file(my_url, destfile = paste0(getwd(), "/data/", to_day, ".csv"))
}
hospital <- read.csv(paste0(getwd(), "/data/", to_day, ".csv"), sep = ";")
# On ajoute le nom des régions:
hospital <- merge(hospital, dep_region, by = "dep")
# On utilise le format date pour coder le jour:
hospital$jour <- as.Date(hospital$jour)

Comment se présente les données du Ministère de la Santé ?

temp <- hospital[hospital$dep == "69" & hospital$jour > to_day - 5, ]
kableExtra::kbl(temp)
dep jour incid_hosp incid_rea incid_dc incid_rad nom_dep region
26047 69 2021-03-24 80 11 10 41 Rhône Auvergne-Rhône-Alpes
26077 69 2021-03-26 90 21 13 78 Rhône Auvergne-Rhône-Alpes
26082 69 2021-03-25 64 16 4 34 Rhône Auvergne-Rhône-Alpes
26095 69 2021-03-23 79 25 16 43 Rhône Auvergne-Rhône-Alpes

Ici il s’agit des données qui donnent chaque jour par département :

  • le nombre de nouvelles entrées en hospitalisations
  • le nombre de nouvelles entrées en réanimations
  • le nombre de décés
  • le nombre de sorties

On créé des fenêtres de 7 jour à partir du dernier jour observé. Par exemple si nous avons les données d’hospitalisation jusqu’au 26 mars 2021 la semaine qui correspond à la semaine t0 correspond à la fenêtre [20 mars 2021; 26 mars 2021]. Dans chaque fenêtre, on calcule le nombre de nouvelles hospitalisations, réanimations et décès par département.

hospital$semaine <- num_semaine(hospital$jour)
# On aggrège les données en fonction de cette fenêtre et on garde tous les départements:
my_basis <- hospital %>%
  group_by(dep, semaine) %>%
  dplyr::summarize(hosp = sum(incid_hosp),
            rea = sum(incid_rea),
            rad = sum(incid_rad),
            dc = sum(incid_dc),
            jour = max(jour),
            region = unique(region))
timeline_data <- data.frame(event = c("Semaine t0", "Semaine t1", "Semaine t2", "Semaine t3"), 
                            start = c(to_day - 8, to_day - 15, to_day - 22, to_day - 29), 
                            end = c(to_day - 1, to_day - 8, to_day - 15, to_day - 22), group = "temps")
vistime(timeline_data)

1.1.2 Données par région

On dispose égaglement des données d’hospitalisations/réanimations/décès par classe d’âge à la différence qu’il s’agit de données régionales et qu’il s’agit des données de stock (nombre d’hospitalisations et réanimations en cours) et pas du nombre de nouvelles hospitalisations. On peut toutefois estimer le nombre de nouvelles hospitalisations ou décès en faisant les différences des valeurs d’un jour sur l’autre.

my_url <- "https://www.data.gouv.fr/fr/datasets/r/08c18e08-6780-452d-9b8c-ae244ad529b3"
if (!file.exists(paste0(getwd(), "/data/age", to_day, ".csv"))) {
  download.file(my_url, destfile = paste0(getwd(), "/data/age", to_day, ".csv"))
}
hospital_age <- read.csv(paste0(getwd(), "/data/age", to_day, ".csv"), sep = ";")
# On ajoute le nom des régions:
hospital_age <- merge(hospital_age, code_region, by.x = "reg", by.y = "code")
# On utilise le format date pour coder le jour:
hospital_age$jour <- as.Date(hospital_age$jour)
# on affecte la semaine
hospital_age$semaine <- num_semaine(hospital_age$jour)

# on calcule les nouvelles hospitalisations/réanimations/décès
hospital_age$new_hosp <- 0
hospital_age$new_rea <- 0
hospital_age$new_dc <- 0

for (k in nrow(hospital_age):1) {
  age_k <- hospital_age$cl_age90[k] 
  jour_k <- hospital_age$jour[k] 
  reg_k <- hospital_age$reg[k] 
  rad_k <- hospital_age$rad[k] 
  dc_k <- hospital_age$dc[k] 
  
  ind_k <- which(hospital_age$reg == reg_k & hospital_age$cl_age90 == age_k & hospital_age$jour == jour_k - 1)
  if (length(ind_k) == 1) {
    hospital_age$new_hosp[k] <- max((hospital_age$hosp[k] - hospital_age$hosp[ind_k]) + 
                                (hospital_age$dc[k] - hospital_age$dc[ind_k]) +     
                              (hospital_age$rad[k] - hospital_age$rad[ind_k]) +
                              (hospital_age$rea[k] - hospital_age$rea[ind_k]), 0)
    hospital_age$new_rea[k] <- max((hospital_age$dc[k] - hospital_age$dc[ind_k]) +     
                              (hospital_age$rea[k] - hospital_age$rea[ind_k]), 0) 
    hospital_age$new_dc[k] <- max((hospital_age$dc[k] - hospital_age$dc[ind_k]), 0) 
  }
}
# on aggrege par semaine
my_basis_age <- hospital_age %>%
  group_by(region, semaine, cl_age90) %>%
  dplyr::summarize(hosp = sum(new_hosp),
                   rea = sum(new_rea),
                   dc = sum(new_dc),
            jour = max(jour),
            region = unique(region))
# On met au format wide
my_basis_age_wide <- tidyr::pivot_wider(my_basis_age,
                           id_cols = c("semaine", "region", "jour", "hosp", "rea", "dc", "cl_age90"),
                           names_from = "cl_age90",
                           values_from = c("hosp", "rea", "dc"))

1.2 Quelle est la situation cette semaine ?

On va calculer quelques chiffres clés pour mesure la situation des régions sur les 7 derniers jours qui viennent de s’écouler : [20 mars 2021; 26 mars 2021].

# On aggrège les données par région sur la semaine `r paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")` :
vs_my_basis_t0 <- my_basis %>%
  filter(semaine %in% "semaine_t00") %>%
  group_by(region) %>%
  summarise(hosp = sum(hosp),
            rea = sum(rea),
            dc = sum(dc)) 
# On aggrège les données par région sur la semaine `r paste0("[", format(to_day - 13, '%d %B %Y'), "; ",  format(to_day - 7, '%d %B %Y'), "]")` :
vs_my_basis_t1 <- my_basis %>%
  filter(semaine %in% "semaine_t01") %>%
  group_by(region) %>%
  summarise(hosp = sum(hosp),
            rea = sum(rea),
            dc = sum(dc)) 

1.2.1 Résumé des hospitalisations

On représente par région:

  • le nombre total de nouvelles hospitalisations (semaine [20 mars 2021; 26 mars 2021]).

  • le nombre moyen journalier de nouvelles hospitalisations (semaine [20 mars 2021; 26 mars 2021]).

  • l’évolution (en pourcentage) entre la semaine [13 mars 2021; 19 mars 2021] et la semaine [20 mars 2021; 26 mars 2021].

hosp_region <- vs_my_basis_t0 %>%
  select(region, hosp) %>%
  mutate(`moyenne jour` = hosp / 7,
         `evolution en %` = (vs_my_basis_t0$hosp - vs_my_basis_t1$hosp) / vs_my_basis_t1$hosp * 100) %>%
    rename(`total semaine` = hosp) %>%
  arrange(-`total semaine`)
# On représente les données :
hosp_region[, 3] <- round(hosp_region[, 3])
hosp_region[, 4] <- round(hosp_region[, 4], 1)
hosp_region[2:4] <- lapply(hosp_region[2:4], function(x) {
    cell_spec(x, bold = T, color = spec_color(x, end = 0.9),
              font_size = spec_font_size(x))
})
hosp_region <- rbind(hosp_region, tibble(region = "France entière", 
          `total semaine` = sum(vs_my_basis_t0$hosp), 
          `moyenne jour` = round(sum(vs_my_basis_t0$hosp) / 7, 0), 
          `evolution en %` = round((sum(vs_my_basis_t0$hosp) - sum(vs_my_basis_t1$hosp)) / 
                                     sum(vs_my_basis_t1$hosp) * 100, 1)))
kbl(hosp_region, escape = F, align = "c") %>% kable_classic("striped", full_width = F)
region total semaine moyenne jour evolution en %
Ile-de-France 3699 528 22.5
Hauts-de-France 1580 226 8.1
Auvergne-Rhône-Alpes 1374 196 35.8
Provence-Alpes-Côte d’Azur 1272 182 -1.3
Grand Est 973 139 3.5
Occitanie 722 103 46.7
Normandie 591 84 25.2
Nouvelle-Aquitaine 529 76 23.6
Bourgogne-Franche-Comté 466 67 16.2
Pays de la Loire 387 55 5.7
Centre-Val de Loire 380 54 14.5
Bretagne 303 43 14.8
DOM-TOM 182 26 -4.2
Corse 42 6 50
France entière 12500 1786 16.9

On représente par département la carte des nouvelles hospitalisations sur la dernière semaine observée ([20 mars 2021; 26 mars 2021])

# On importe les contours des départements
dep.2015 <- readOGR(dsn="./departements 2015/DEPARTEMENT", layer="DEPARTEMENT")
## OGR data source with driver: ESRI Shapefile 
## Source: "/media/thibault/My Passport/confinement/covid/departements 2015/DEPARTEMENT", layer: "DEPARTEMENT"
## with 96 features
## It has 11 fields
dep.2015@data$CODE_DEPT <- as.character(dep.2015@data$CODE_DEPT) 

# data 
dep.2015_00 <- merge(dep.2015, filter(my_basis, semaine == "semaine_t00"), 
                     by.x = "CODE_DEPT", by.y = "dep")
# On représente les nouvelles hospitalisations sur la dernière semaine observée (`r paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")`) (Source pour le code : https://rgeomatic.hypotheses.org/1361#more-1361)
# quantization breaks of the rate
bks <- c(0, getBreaks(v = dep.2015_00$hosp, method = "kmeans", nclass = 5))
# correct the breaks to use the global rate as limit of class 
# get a color palette
cols <- carto.pal(pal1 = "green.pal", n1 = 3, pal2 = "wine.pal", n2 = 3)
## Choropleth layer
# set figure margins and background color
par(mar = c(0, 0, 1.2, 0), bg = "lemonchiffon")
# Hospitalisations
choroLayer(spdf = dep.2015_00, var = "hosp", breaks = bks, col = cols,
           border = "khaki", lwd = 0.5, 
           legend.title.txt = "Hospitalisations", 
           legend.pos = 'topleft', legend.values.rnd = 0)
# add a title and layout
layoutLayer(title = paste0("Nouvelles hospitalisations ", 
  paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")), 
            sources = "", north = TRUE, scale = 50, tabtitle = TRUE,
            theme = "sand.pal", frame = FALSE,  
            author = "")

1.2.2 Résumé des réanimations

On représente par région:

  • le nombre total de nouvelles réanimations (semaine [20 mars 2021; 26 mars 2021]).

  • le nombre moyen journalier de nouvelles réanimations (semaine [20 mars 2021; 26 mars 2021]).

  • l’évolution (en pourcentage) entre la semaine [13 mars 2021; 19 mars 2021] et la semaine [20 mars 2021; 26 mars 2021].

rea_region <- vs_my_basis_t0 %>%
  select(region, rea) %>%
  mutate(`moyenne jour` = rea / 7,
         `evolution en %` = (vs_my_basis_t0$rea - vs_my_basis_t1$rea) / vs_my_basis_t1$rea * 100) %>%
    rename(`total semaine` = rea) %>%
  arrange(-`total semaine`)
# On représente les données :
rea_region[, 3] <- round(rea_region[, 3])
rea_region[, 4] <- round(rea_region[, 4], 1)
rea_region[2:4] <- lapply(rea_region[2:4], function(x) {
    cell_spec(x, bold = T, color = spec_color(x, end = 0.9),
              font_size = spec_font_size(x))
})

rea_region <- rbind(rea_region, tibble(region = "France entière", 
          `total semaine` = sum(vs_my_basis_t0$rea), 
          `moyenne jour` = round(sum(vs_my_basis_t0$rea) / 7, 0), 
          `evolution en %` = round((sum(vs_my_basis_t0$rea) - sum(vs_my_basis_t1$rea)) / 
                                     sum(vs_my_basis_t1$rea) * 100, 1)))

kbl(rea_region, escape = F, align = "c") %>% kable_classic("striped", full_width = F)
region total semaine moyenne jour evolution en %
Ile-de-France 906 129 14
Hauts-de-France 369 53 16.4
Auvergne-Rhône-Alpes 293 42 32
Provence-Alpes-Côte d’Azur 249 36 -2.7
Grand Est 211 30 -3.2
Occitanie 161 23 42.5
Nouvelle-Aquitaine 106 15 11.6
Centre-Val de Loire 93 13 32.9
Normandie 92 13 13.6
Pays de la Loire 83 12 43.1
Bourgogne-Franche-Comté 75 11 0
Bretagne 62 9 29.2
DOM-TOM 37 5 -30.2
Corse 3 0 -62.5
France entière 2740 391 13.7

On représente par département la carte des nouvelles réanimations sur la dernière semaine observée ([20 mars 2021; 26 mars 2021])

# quantization breaks of the rate
bks <- c(0, getBreaks(v = dep.2015_00$rea, method = "kmeans", nclass = 5))
# correct the breaks to use the global rate as limit of class 
# get a color palette
cols <- carto.pal(pal1 = "green.pal", n1 = 3, pal2 = "wine.pal", n2 = 3)
## Choropleth layer
# set figure margins and background color
par(mar = c(0, 0, 1.2, 0), bg = "lemonchiffon")
# Hospitalisations
choroLayer(spdf = dep.2015_00, var = "rea", breaks = bks, col = cols,
           border = "khaki", lwd = 0.5, 
           legend.title.txt = "Réanimations", 
           legend.pos = 'topleft', legend.values.rnd = 0)
# add a title and layout
layoutLayer(title = paste0("Nouvelles Réanimations ", 
  paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")), 
            sources = "", north = TRUE, scale = 50, tabtitle = TRUE,
            theme = "sand.pal", frame = FALSE,  
            author = "")

1.2.3 Résumé des décès

On représente par région:

  • le nombre total de nouveaux décès (semaine [20 mars 2021; 26 mars 2021]).

  • le nombre moyen journalier de nouveaux décès (semaine [20 mars 2021; 26 mars 2021]).

  • l’évolution (en pourcentage) entre la semaine [13 mars 2021; 19 mars 2021] et la semaine [20 mars 2021; 26 mars 2021].

dc_region <- vs_my_basis_t0 %>%
  select(region, dc) %>%
  mutate(`moyenne jour` = dc / 7,
         `evolution en %` = (vs_my_basis_t0$dc - vs_my_basis_t1$dc) / vs_my_basis_t1$dc * 100) %>%
    rename(`total semaine` = dc) %>%
  arrange(-`total semaine`)
# On représente les données :
dc_region[, 3] <- round(dc_region[, 3])
dc_region[, 4] <- round(dc_region[, 4], 1)
dc_region[2:4] <- lapply(dc_region[2:4], function(x) {
    cell_spec(x, bold = T, color = spec_color(x, end = 0.9),
              font_size = spec_font_size(x))
})

dc_region <- rbind(dc_region, tibble(region = "France entière", 
          `total semaine` = sum(vs_my_basis_t0$dc), 
          `moyenne jour` = round(sum(vs_my_basis_t0$dc) / 7, 0), 
          `evolution en %` = round((sum(vs_my_basis_t0$dc) - sum(vs_my_basis_t1$dc)) / 
                                     sum(vs_my_basis_t1$dc) * 100, 1)))

kbl(dc_region, escape = F, align = "c") %>% kable_classic("striped", full_width = F)
region total semaine moyenne jour evolution en %
Ile-de-France 409 58 -0.7
Hauts-de-France 244 35 0.4
Auvergne-Rhône-Alpes 213 30 0
Grand Est 206 29 18.4
Provence-Alpes-Côte d’Azur 181 26 -15
Normandie 85 12 -8.6
Occitanie 82 12 6.5
Nouvelle-Aquitaine 79 11 -10.2
Bourgogne-Franche-Comté 69 10 -12.7
Pays de la Loire 52 7 -8.8
Centre-Val de Loire 49 7 -16.9
Bretagne 44 6 51.7
DOM-TOM 21 3 -48.8
Corse 5 1 0
France entière 1739 248 -2.5

On représente par département la carte des nouveaux décès sur la dernière semaine observée ([20 mars 2021; 26 mars 2021])

# quantization breaks of the rate
bks <- c(0, getBreaks(v = dep.2015_00$dc, method = "kmeans", nclass = 5))
# correct the breaks to use the global rate as limit of class 
# get a color palette
cols <- carto.pal(pal1 = "green.pal", n1 = 3, pal2 = "wine.pal", n2 = 3)
## Choropleth layer
# set figure margins and background color
par(mar = c(0, 0, 1.2, 0), bg = "lemonchiffon")
# Hospitalisations
choroLayer(spdf = dep.2015_00, var = "dc", breaks = bks, col = cols,
           border = "khaki", lwd = 0.5, 
           legend.title.txt = "Décès", 
           legend.pos = 'topleft', legend.values.rnd = 0)
# add a title and layout
layoutLayer(title = paste0("Nouveaux décès ", 
  paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")), 
            sources = "", north = TRUE, scale = 50, tabtitle = TRUE,
            theme = "sand.pal", frame = FALSE,  
            author = "")

1.3 Comment a évolué la situation depuis le début de l’épidémie ?

1.3.1 Graphique d’évolution

1.3.1.1 Hospitalisations

Ici, on représente le nombre d’entrée en hospitalisations par semaine en fonction du temps sur la France entière.

my_basis_fr <- my_basis %>%
  group_by(semaine, jour) %>%
  summarise(hosp = sum(hosp),
            rea = sum(rea),
            dc = sum(dc))
p <- ggplot(data = my_basis_fr,
            aes(x = jour, y = hosp)) +
  geom_line() +
  labs(title = "Nouvelles hospitalisations par semaine",
       x = "semaine",
       y = "hospitalisations",
       fill = "Age") 
plotly::ggplotly(p)

On représente la même figure mais en mettant en relief la répartition des valeurs par région :

my_basis$region <- factor(my_basis$region, levels = hosp_region$region)
# On aggrège les données par région et semaine:
my_basis_by_region <- my_basis %>%
  group_by(semaine, region) %>%
  summarize(hosp = sum(hosp),
            rea = sum(rea),
            dc = sum(dc),
            jour = max(jour))
# On représente les shares par tranche d'age 
p <- ggplot(my_basis_by_region) + 
  aes(x = jour, y = hosp, fill = region) +
  geom_area(color = "black") +
  labs(title = "Nouvelles hospitalisations par région",
       x = "Semaine",
       y = "Total",
       fill = "Hospitalisation") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On représente la même figure mais en mettant en relief la répartition des valeurs par classe d’âge :

# On aggrège les données par age et semaine:
my_basis_by_age_1 <- my_basis_age %>%
  group_by(semaine, cl_age90) %>%
  summarize(hosp = sum(hosp),
            rea = sum(rea),
            dc = sum(dc),
            jour = max(jour))
# On représente les shares par tranche d'age 
p <- ggplot(filter(my_basis_by_age_1, cl_age90 != 0)) + 
  aes(x = jour, y = hosp, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Nouvelles hospitalisations par classe d'âges",
       x = "Semaine",
       y = "Total",
       fill = "Hospitalisation") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On met les valeurs en pourcentages pour que le graphique soit plus visible

# On aggrège les données par age et semaine:
my_basis_by_age_2 <- my_basis_age %>%
  filter(cl_age90 != 0) %>%
  group_by(semaine, cl_age90) %>%
  summarize(hosp = sum(hosp),
            rea = sum(rea),
            dc = sum(dc),
            jour = max(jour)) %>%
  group_by(cl_age90)  %>%
  group_by(semaine) %>%
  mutate(percent_hosp = hosp / sum(hosp),
         percent_rea = rea / sum(rea), 
         percent_dc = dc / sum(dc))
# On représente les shares par tranche d'age 
p <- ggplot(my_basis_by_age_2) + 
  aes(x = jour, y = percent_hosp, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Répartition des nouvelles hospitalisations par classe d'âges",
       x = "Semaine",
       y = "Total",
       fill = "Hospitalisation") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

1.3.1.2 Réanimations

On représente le nombre cummulé d’entrée en réanimations par semaine en fonction du temps sur la France entière.

p <- ggplot(data = my_basis_fr,
            aes(x = jour, y = rea)) +
  geom_line() +
  labs(title = "Nouvelles réanimations par semaine",
       x = "semaine",
       y = "réanimations",
       fill = "Age") 
plotly::ggplotly(p)

On représente la même figure mais en mettant en relief la répartition des valeurs par région :

# On représente les shares par régions
p <- ggplot(my_basis_by_region) + 
  aes(x = jour, y = rea, fill = region) +
  geom_area(color = "black") +
  labs(title = "Nouvelles réanimations par région",
       x = "Semaine",
       y = "Total",
       fill = "Réanimations") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On représente la même figure mais en mettant en relief la répartition des valeurs par classe d’âge :

p <- ggplot(filter(my_basis_by_age_1, cl_age90 != 0)) + 
  aes(x = jour, y = rea, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Nouvelles réanimations par classe d'âges",
       x = "Semaine",
       y = "Total",
       fill = "Réanimations") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On met les valeurs en pourcentages pour que le graphique soit plus visibles

# On représente les shares par tranche d'age 
p <- ggplot(my_basis_by_age_2) + 
  aes(x = jour, y = percent_rea, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Répartition des nouvelles réanimations par classe d'âges",
       x = "Semaine",
       y = "Total",
       fill = "Réanimations") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

Enfin, on représente le ratio réanimations / hospitalisations :

p <- ggplot(data = my_basis_by_age_2,
            aes(x = jour, y = rea / hosp, col = factor(cl_age90))) +
  geom_line() +
  labs(title = "Ratio réanimations/hospitalisations par semaine",
       x = "semaine",
       y = "Ratio réa / hospi",
       color = "Age") 
plotly::ggplotly(p)

1.3.1.3 Décès

On représente le nombre cummulé de nouveaux décès par semaine en fonction du temps sur la France entière.

p <- ggplot(data = my_basis_fr,
            aes(x = jour, y = dc)) +
  geom_line() +
  labs(title = "Nouveux décès par semaine",
       x = "semaine",
       y = "décès",
       fill = "Age") 
plotly::ggplotly(p)

On représente la même figure mais en mettant en relief la répartition des valeurs par région :

# On représente les shares par régions
p <- ggplot(my_basis_by_region) + 
  aes(x = jour, y = dc, fill = region) +
  geom_area(color = "black") +
  labs(title = "Nouveux décès par région",
       x = "Semaine",
       y = "Total",
       fill = "Décès") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On représente la même figure mais en mettant en relief la répartition des valeurs par classe d’âge :

p <- ggplot(filter(my_basis_by_age_1, cl_age90 != 0)) + 
  aes(x = jour, y = dc, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Nouveux décès par classe d'âges",
       x = "Semaine",
       y = "Total",
       fill = "Décès") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On met les valeurs en pourcentages pour que le graphique soit plus visibles

# On représente les shares par tranche d'age 
p <- ggplot(my_basis_by_age_2) + 
  aes(x = jour, y = percent_dc, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Répartition des nouveux décès par classe d'âges",
       x = "Semaine",
       y = "Total",
       fill = "Décès") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

Enfin, on représente le ratio décès / réanimations :

p <- ggplot(data = my_basis_by_age_2,
            aes(x = jour, y = dc / rea, col = factor(cl_age90))) +
  geom_line() +
  labs(title = "Ratio décès/réanimations par semaine",
       x = "semaine",
       y = "Ratio décès / réanimations",
       color = "Age") 
plotly::ggplotly(p)

1.3.2 Graphique d’évolution du nombre d’hospitalisations par départements groupés par région

On va s’intéresser au nombre d’hospitalisations. On peut représenter cette information département par département. Ici, on représente le nombre cummulé d’entrée par semaine en fonction du temps.

On représente d’abord les 4 régions actuellement les plus touchées et pour lesquelles l’axe des ordonnées va de 0 à 1200.

p <- ggplot(data = filter(my_basis, region %in% c("Provence-Alpes-Côte d'Azur",
                                                  "Auvergne-Rhône-Alpes", 
                                                  "Hauts-de-France",
                                                   "Ile-de-France")),
            aes(x = jour, y = hosp, color = region, group = dep)) +
  geom_line() + 
  coord_cartesian(ylim = c(0, 1200)) +
  facet_wrap(~ region, nrow = 4)
plotly::ggplotly(p)

On représente ensuite les 8 régions suivantes les plus touchées mais avec une échelle différente sur l’axe des ordonnées (0 à 400):

p <- ggplot(data = filter(my_basis, region %in% c("Occitanie",
                                                  "Grand Est", 
                                                  "Bourgogne-Franche-Comté",
                                                  "Nouvelle-Aquitaine", 
                                                  "Normandie",
                                                  "Pays de la Loire", 
                                                  "Centre-Val de Loire",
                                                  "Bretagne")),
            aes(x = jour, y = hosp, color = region, group = dep)) +
  geom_line()  + 
  coord_cartesian(ylim = c(0, 400)) +
  facet_wrap(~ region, nrow = 8)
plotly::ggplotly(p)

Enfin, on représente les 2 régions les moins touchées et avec une échelle différente sur l’axe des ordonnées (0 à 200):

p <- ggplot(data = filter(my_basis, region %in% c("DOM-TOM", "Corse")),
            aes(x = jour, y = hosp, color = region, group = dep)) +
  geom_line()  + 
  coord_cartesian(ylim = c(0, 200)) +
  facet_wrap(~ region, nrow = 2)
plotly::ggplotly(p)

1.3.3 Cartes d’évolution sur les 6 dernières semaines

On représente l’évolution des hospitalisations sur les 6 dernières semaines:

On représente l’évolution des réanimations sur les 6 dernières semaines:

On représente l’évolution des décès sur les 6 dernières semaines:

1.4 Départements avec les plus fortes évolutions en valeurs absolues par rapport à la semaine précédente

On calcule la différence entre le nombre de nouveaux patients hospitalisés sur la période [20 mars 2021; 26 mars 2021] et sur la période [12 mars 2021; 19 mars 2021]

my_basis_evol <- merge(my_basis %>% 
  filter(semaine == "semaine_t00") %>%
  rename(hosp_t0 = hosp) %>%
  select(dep, hosp_t0, region),
    my_basis %>% 
  filter(semaine == "semaine_t01") %>%
  select(dep, hosp) %>%
  rename(hosp_t1 = hosp),
by = "dep") %>%
  mutate(diff_abs = hosp_t0 - hosp_t1,
         diff_rel = (hosp_t0 - hosp_t1) / hosp_t1) %>%
  mutate(evol = factor(ifelse(diff_rel < 0, "<0", 
                       ifelse(diff_rel >= 0 & diff_rel < 0.5, "[0,50%[",
                           ifelse(diff_rel >= 0.5 & diff_rel < 1, "[50,100%[", 
                                  ifelse(diff_rel >= 1 & diff_rel < 2, "[100,200%[",
                                         ">200%")))), 
                       levels = c("<0", "[0,50%[", "[50,100%[", "[100,200%[", ">200%")))
my_basis_evol_long <- tidyr::pivot_longer(data = my_basis_evol,
                                   col = c(2, 4),
                                   names_to = "semaine",
                                   values_to = "hospitalisations")
my_basis_evol_long$semaine <- factor(my_basis_evol_long$semaine,
      levels = c("hosp_t1", "hosp_t0"),
      labels = c(paste0("[", format(to_day - 14, '%d %b'), "; ",  
                        format(to_day - 8, '%d %b'), "]"),
                 paste0("[", format(to_day - 7, '%d %b'), "; ",  
                        format(to_day - 1, '%d %b'), "]")))

On va représenter des couleurs différentes en fonction du taux d’évolution découpées en 5 classes

  • taux d’évolution négatif
  • taux compris entre 0 et \(50\%\)
  • taux compris entre \(50\%\) et \(100\%\)
  • taux compris entre \(100\%\) et \(200\%\)
  • taux supérieur à \(200\%\)
p <- ggplot(my_basis_evol_long, aes(x = semaine, y = hospitalisations, colour = evol, group = dep))+
    geom_line() +
  scale_colour_manual(values = c("blue", "#FC9272", "#FB6A4A", "#DE2D26", "#A50F15")) + 
  facet_wrap(~region)
plotly::ggplotly(p)

2 Données relatives aux résultats des tests virologiques COVID-19

On met à jour les données chaque jour :

# On récupére directement l'url depuis le site du ministère:
url <- "https://www.data.gouv.fr/fr/datasets/r/406c6a23-e283-4300-9484-54e78c8ae675"
if (!file.exists(paste0(getwd(), "/data/test", to_day, ".csv"))) {
  download.file(url, destfile = paste0(getwd(), "/data/test", to_day, ".csv"))
    }
test <- read.csv(paste0(getwd(), "/data/test", to_day, ".csv"), sep = ";")
# on enlève les départements qui ne sont pas présents dans la table hopital
test <- test %>%
  filter(!(dep %in% c("975", "977", "978")))
# On utilise le format date pour coder le jour:
test$jour <- as.Date(test$jour)
test$semaine <- num_semaine(test$jour, begin = max(hospital$jour) - 3, decallage = TRUE)
test_region <- merge(test, dep_region, by = "dep")

On va calculer quelques chiffres clés pour mesurer la situation des régions sur une fenêtre de 7 jours [17 mars 2021; 23 mars 2021]. On ne peut pas représenter les 7 derniers jours car les données ne sont pas encore diffusées.

# On aggrège les données par région sur la semaine `r paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")` :
vs_my_basis_t0 <- test_region %>%
  filter(semaine %in% "semaine_t0-1", cl_age90 == 0) %>%
  group_by(region) %>%
  summarise(P = sum(P)) 
# On aggrège les données par région sur la semaine `r paste0("[", format(to_day - 13, '%d %B %Y'), "; ",  format(to_day - 7, '%d %B %Y'), "]")` :
vs_my_basis_t1 <- test_region %>%
  filter(semaine %in% "semaine_t00", cl_age90 == 0) %>%
  group_by(region) %>%
  summarise(P = sum(P)) 

On représente par région:

P_region <- vs_my_basis_t0 %>%
  select(region, P) %>%
  mutate(`moyenne jour` = P / 7,
         `evolution en %` = (vs_my_basis_t0$P - vs_my_basis_t1$P) / vs_my_basis_t1$P * 100) %>%
    rename(`total semaine` = P) %>%
  arrange(-`total semaine`)
# On représente les données :
P_region[, 3] <- round(P_region[, 3])
P_region[, 4] <- round(P_region[, 4], 1)
P_region[2:4] <- lapply(P_region[2:4], function(x) {
    cell_spec(x, bold = T, color = spec_color(x, end = 0.9),
              font_size = spec_font_size(x))
})
P_region <- rbind(P_region, tibble(region = "France entière", 
          `total semaine` = sum(vs_my_basis_t0$P), 
          `moyenne jour` = round(sum(vs_my_basis_t0$P) / 7, 0), 
          `evolution en %` = round((sum(vs_my_basis_t0$P) - sum(vs_my_basis_t1$P)) / 
                                     sum(vs_my_basis_t1$P) * 100, 1)))
kbl(P_region, escape = F, align = "c") %>% kable_classic("striped", full_width = F)
region total semaine moyenne jour evolution en %
Ile-de-France 75196 10742 16.6
Hauts-de-France 28175 4025 13.3
Auvergne-Rhône-Alpes 23866 3409 18.3
Provence-Alpes-Côte d’Azur 19291 2756 5.4
Grand Est 14875 2125 8.8
Occitanie 13544 1935 23.4
Nouvelle-Aquitaine 10229 1461 15.3
Normandie 10127 1447 15.9
Pays de la Loire 8251 1179 15.7
Centre-Val de Loire 6770 967 19.7
Bourgogne-Franche-Comté 6713 959 14.9
Bretagne 5742 820 15
DOM-TOM 2253 322 -2.7
Corse 488 70 -5.8
France entière 225520 32217 14.7

2.1 Représentation des testés positifs par tranche d’âge en fonction du temps

On représente les testés positifs par tranche d’age:

# On aggrège les données par tranche d'age et semaine:
test_by_age <- test %>%
  filter(cl_age90 != 0) %>%
  group_by(semaine, cl_age90) %>%
  summarize(P = sum(P),
            jour = max(jour)) %>%
  group_by(semaine) %>%
  mutate(percent_P = P / sum(P))
p <- ggplot(test_by_age) + 
  aes(x = jour, y = P, fill = factor(cl_age90)) +
  geom_area(color = "black") +
  labs(title = "Nombre de téstés positifs par classe d'âge ",
       x = "Week",
       y = "Effectifs",
       fill = "Age") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On représente les testés positifs par région :

test_region$region <- factor(test_region$region, levels = hosp_region$region)
test_by_region <- test_region %>%
  filter(cl_age90 == 0) %>%
  group_by(semaine, region) %>%
  summarize(P = sum(P),
            jour = max(jour)) %>%
  group_by(semaine) %>%
  mutate(percent_P = P / sum(P))
p <- ggplot(test_by_region) + 
  aes(x = jour, y = P, fill = factor(region)) +
  geom_area(color = "black") +
  labs(title = "Nombre de testés positifs par région",
       x = "Week",
       y = "Effectifs",
       fill = "Region") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

2.2 Graphique d’évolution du nombre de détectés positifs par départements groupés par région

test_by_dep <- test_region %>%
  filter(cl_age90 == 0) %>%
  group_by(semaine, region, dep) %>%
  summarize(P = sum(P),
            jour = max(jour)) %>%
  group_by(semaine) %>%
  mutate(percent_P = P / sum(P))

p <- ggplot(data = test_by_dep, 
            aes(x = jour, y = P, color = region, group = dep)) +
  geom_line() +
  coord_cartesian(ylim = c(0, 20000)) +
  facet_wrap(~ region)
plotly::ggplotly(p)

2.3 Choix du décallage

Hypothèse: on suppose que le nombre d’admis en hospitalisations à la semaine t0 dépend du nombre de cas testés positifs sur une fenêtre de 7 jours qui aura commencé 10 jours avant la semaine t0. Exemple: la semaine t0 est [20 mars 2021; 26 mars 2021], on va l’expliquer par le nombre de personnes testées positive du [10 mars 2021; 16 mars 2021].

3 Préparation des données pour la modélisation

On prépare ici les données pour l’étape de modélisation:

# On aggrège les données par département et semaine:
test_by <- test %>%
  filter(cl_age90 != 0) %>%
  group_by(dep, semaine, cl_age90) %>%
  summarize(P = sum(P),
            jour = max(jour)) %>%
  group_by(dep, semaine) %>%
  mutate(percent_P = P / sum(P))
# On passe d'un format long à un format wide les tranches d'âge pour les avoir comme des variables explicatives
test_by$cl_age90 <- paste0("tranche_", test_by$cl_age90)
test_long <- tidyr::pivot_wider(test_by,
                           id_cols = c("semaine", "dep", "jour", "P", "cl_age90"),
                           names_from = "cl_age90",
                           values_from = "P")
# On aggrège les données par département et semaine:
test_by <- test_long %>%
  group_by(dep, semaine) %>%
  summarize(tranche_9 = sum(tranche_9),
            tranche_19 = sum(tranche_19),
            tranche_29 = sum(tranche_29),
            tranche_39 = sum(tranche_39),
            tranche_49 = sum(tranche_49),
            tranche_59 = sum(tranche_59),
            tranche_69 = sum(tranche_69),
            tranche_79 = sum(tranche_79),
            tranche_89 = sum(tranche_89),
            tranche_90 = sum(tranche_90)) %>%
  mutate(tranche_0 = tranche_9 + tranche_19 + tranche_29 + tranche_39 + 
           tranche_49 + tranche_59 + tranche_69 + tranche_79 + tranche_89 + tranche_90)

# On merge les jeux de données :
my_basis <- merge(my_basis, test_by, by = c("dep", "semaine"), all.y = T)
my_basis[which(is.na(my_basis$jour)), "jour"] <- to_day + 6
my_basis[which(is.na(my_basis$region)), "region"] <- dep_region$region[match(my_basis[which(is.na(my_basis$region)), "dep"], dep_region$dep)]

3.1 Représentation du lien entre entre le nombre d’hospitalisations et le nombre de testés positifs

Dans un premier temps, on va rerésenter les départements par des cercles de taille proportionnelle aux nombres de testés positifs la semaine du [10 mars 2021; 16 mars 2021]. La couleur dépend du nombre d’hospitalisations observés la semaine du [20 mars 2021; 26 mars 2021].

dep.2015_00 <- merge(dep.2015, filter(my_basis, semaine == "semaine_t00"), 
                     by.x = "CODE_DEPT", by.y = "dep")
w <- 1 - (dep.2015_00$tranche_0 / max(dep.2015_00$tranche_0)) 
dep.2015_dorling <- cartogram_dorling(dep.2015_00, "tranche_0", m_weight = w, k = 5)
# dep.2015$tranche_0 <- as.numeric(dep.2015$tranche_0)
# dep.2015_ncont <- cartogram_ncont(dep.2015, "tranche_0")
# set figure margins and background color
par(mar = c(0, 0, 1.2, 0), bg = "lemonchiffon")
# Hospitalisations
bks <- c(0, getBreaks(v = dep.2015_00$hosp, method = "kmeans", nclass = 5))
# correct the breaks to use the global rate as limit of class 
# get a color palette
cols <- carto.pal(pal1 = "green.pal", n1 = 3, pal2 = "wine.pal", n2 = 3)
choroLayer(spdf = dep.2015_dorling, var = "hosp", breaks = bks, col = cols, lwd = 0.5,
           legend.title.txt = "Hospitalisations", 
           legend.pos = 'topleft', legend.values.rnd = 0)
# plot(dep.2015, add = T, border = "khaki")
# add a title and layout
layoutLayer(title = paste0("Nouvelles hospitalisations ", 
  paste0("[", format(to_day - 7, '%d %B %Y'), "; ",  format(to_day - 1, '%d %B %Y'), "]")), 
            sources = "", north = TRUE, scale = 50, tabtitle = TRUE,
            theme = "sand.pal", frame = FALSE,  
            author = "")

On représente le nombre de nouvelles hospitalisations par semaine et par département en fonction du nombre de personnes testées positives quelques jours auparavant et on constate un lien très fort.

p <- ggplot(my_basis) +                
  aes(x = tranche_0, y = hosp) +     
  geom_point() +                  
  geom_smooth(method = "loess") + 
  geom_smooth(method = "lm",     
              col = "red") +
  facet_wrap(~ region)
plotly::ggplotly(p)

4 Prédire le nombre de testés positifs

On rappelle que les données sur le nombre de testés positifs ne sont disponible que jusqu’au 23 mars 2021. Notre objectif est de prédire le nombre de testés positifs du 24 mars 2021 au 30 mars 2021 en utilisant des modèles de séries temporelles. En utilisant un modèle de série temporelle on suppose que ce qu’on observe à la date \(j\) dépend de ce qu’il s’est passé les dates antérieures. On va utiliser 3 modèles différents et en fonction de leur performence (sur les données passées), on va leur donner plus ou moins d’importance.

4.1 Modèle de type Box-Jenkins

Ici, on considère les données journalières, et non hebdomadaires. On va expliquer \(y_{d, t}^a\), le nombre de testés positifs le jour \(t\) dans le département \(d\) et dans la tranche d’âge \(a\). La stratégie utilisée est la suivante :

  • on différencie chaque série pour les rendre stationnaire (on ne vérifiera pas l’hypothèse de stationarité après la différenciation car on modélise énormément de modèle, ici on a \(A\times D\) séries où \(A\) est le nombre de classe d’âge et \(D\) le nombre de département et notre but est d’avoir une procédure automatique)

  • on cherche le meilleur modèle \(ARIMA(p,d,q)\) selon le critère AIC, à l’aide de la fonction auto.arima() (package forecast)

  • on prédit sur les 7 prochains jours à venir et on cummule ces prédictions pour avoir une prédiction du nombre de cas positifs sur la semaine à venir.

4.2 Modèle de type Lissage exponentiel

On va appliquer deux modèles de lissage exponentiels:

  • un modèle journalier qui va permettre de modéliser \(y_{d, t}^a\), le nombre de testés positifs le jour \(t\) dans le département \(d\) et dans la tranche d’âge \(a\) afin de prédire le nombre de testés positifs dans les 7 jours.

  • un modèle hebdomadaire qui va permettre de modéliser \(y_{d, s}^a\), le nombre de testés positifs la semaine \(s\) dans le département \(d\) et dans la tranche d’âge \(a\) afin de prédire le nombre de testés positifs la semaine à venir.

4.3 Combinaison des prédictions

On apprentit les modèles ci-dessus en enlevant la dernière semaine observée dans le but de donner des poids différents aux trois modèles de prédictions utilisés. Ainsi, on donnera davantage de poids aux modèles qui ont mieux prédit la dernière semaine observée.

# prediction par department 
nom_dep <- my_basis[my_basis$semaine == "semaine_t00", "dep"]
pred_cas <- numeric(length(nom_dep))
my_tab <- data.frame(true_P = numeric(0), pred_1 = numeric(0), pred_2 = numeric(0), pred_3 = numeric(0))
      
# apprentissage
for (k in length(nom_dep):1) {
  if (nom_dep[k] %in% c("975", "977", "978")) {
    my_basis <- rbind(data_k, my_basis)
  } else {
    for (age in c(0, 9, 19, 29, 39, 49, 59, 69, 79, 89, 90)) {
      
      # apprentissage
      temp <- test[test$dep == nom_dep[k] & test$cl_age90 == age & test$jour <= max(test$jour) - 7, ]
      my_ts <- zoo(temp$P, temp$jour)
      
      # Methode 1 : ARIMA
      my_ts_diff <- diff(my_ts)
      # tseries::adf.test(my_ts) 
      # tseries::adf.test(my_ts_diff)
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
      pred_1 <- round(sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7]), 0)
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_2 <- round(sum(forecast_my_mod_exp[1:7]), 0)
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% c("semaine_t0-1", "semaine_t0-2")), ]
      my_ts_exp <- zoo(temp[ , paste0("tranche_", age)], temp$jour)
      my_mod_exp_2 <- ets(my_ts_exp)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_3 <- round(forecast_my_mod_exp[1], 0)
      
      true_P <- sum(test[which(test$dep == nom_dep[k] & test$cl_age90 == age & 
                               test$jour > (max(test$jour) - 7)), "P"])
      my_tab <- rbind(my_tab, data.frame(true_P = true_P, pred_1 = pred_1, pred_2 = pred_2, pred_3 = pred_3))
    }
  }
}

res_lm_cas <- lm(true_P ~ pred_1 + pred_2 + pred_3, data = my_tab)

for (k in length(nom_dep):1) {
  data_k <- data.frame(dep = nom_dep[k], semaine = "semaine_t0-2", hosp = NA, rea = NA, rad = NA, dc = NA,
                         jour = to_day + 13, region = dep_region[match(nom_dep[k], dep_region$dep) , "region"],
                         tranche_9 = NA, tranche_19 = NA,  tranche_29 = NA,  tranche_39 = NA,  tranche_49 = NA, 
                         tranche_59 = NA,  tranche_69 = NA,  tranche_79 = NA,  tranche_89 = NA,  tranche_90 = NA, 
                         tranche_0  = NA)
  data_k_2 <- data.frame(dep = nom_dep[k], semaine = "semaine_t0-2", hosp = NA, rea = NA, rad = NA, dc = NA,
                         jour = to_day + 13, region = dep_region[match(nom_dep[k], dep_region$dep) , "region"],
                         tranche_9 = NA, tranche_19 = NA,  tranche_29 = NA,  tranche_39 = NA,  tranche_49 = NA, 
                         tranche_59 = NA,  tranche_69 = NA,  tranche_79 = NA,  tranche_89 = NA,  tranche_90 = NA, 
                         tranche_0  = NA)
      
  if (nom_dep[k] %in% c("975", "977", "978")) {
    my_basis <- rbind(data_k, my_basis)
  } else {
    for (age in c(0, 9, 19, 29, 39, 49, 59, 69, 79, 89, 90)) {
      # modèle journaliers 
      temp <- test[test$dep == nom_dep[k] & test$cl_age90 == age, ]
      my_ts <- zoo(temp$P, temp$jour)
      my_ts_diff <- diff(my_ts)
      # tseries::adf.test(my_ts) 
      # tseries::adf.test(my_ts_diff)
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
      pred_1 <- round(sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7]), 0)
      # modèles exponentiels
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_2 <- round(sum(forecast_my_mod_exp[1:7]), 0)
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% c("semaine_t0-2")), ]
      my_ts_exp <- zoo(temp[ , paste0("tranche_", age)], temp$jour)
      my_mod_exp_2 <- ets(my_ts_exp)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_3 <- round(forecast_my_mod_exp[1], 0)
      data_k[ , paste0("tranche_", age)] <- predict(res_lm_cas, newdata = data.frame(pred_1 = pred_1,
                                                                                     pred_2 = pred_2,
                                                                                     pred_3 = pred_3))
    }
    my_basis <- rbind(data_k, my_basis)
  }
}

On représente les testés positifs par région en ajoutant les valeurs de la semaine prédite:

test_by_region <- my_basis %>%
  group_by(semaine, region) %>%
  summarize(P = sum(tranche_0),
            jour = max(jour)) 
test_by_region$region <- factor(test_by_region$region, levels = hosp_region$region)
p <- ggplot(test_by_region) + 
  aes(x = jour - 10, y = P, fill = factor(region)) +
  geom_area(color = "black") +
  labs(title = "Prédictions du nombre de testés positifs par région",
       x = "Week",
       y = "Effectifs",
       fill = "Region") +
  scale_fill_brewer(palette = "Set3") +
  theme_minimal() 
plotly::ggplotly(p)

On aggrège les données à la France entière:

  my_basis_fr <- my_basis %>%
    group_by(semaine, jour) %>%
    summarise(P = sum(tranche_0))
  p <- ggplot(data = filter(my_basis_fr, semaine %in% c("semaine_t0-2", "semaine_t0-1", "semaine_t00")),
              aes(x = jour - 10, y = P)) +
    geom_line(col = "red") +
    geom_line(data = filter(my_basis_fr, !(semaine %in% c("semaine_t0-2"))), 
              aes(x = jour - 10, y = P)) +
  labs(title = "Prédiction des nouveaux cas positifs dans les 7 jours",
       x = "semaine",
       y = "Cas positifs",
       fill = "Age") 
plotly::ggplotly(p)

5 Prédire le nombre d’hospitalisation de la semaine à venir

5.1 Modèle linéaire 1 (sur les départements) en fonction du nombre de cas détectés positifs : 1 modèle par région

Ici, pour chaque région \(r\), le modèle est de la forme

\[y_{i,t}^r=\beta_0^r+\beta_1^rx_{i,t'}^r+\epsilon_{i,t}^r\] avec:

  • \(y_{i,t}\) le nombre d’entrées à l’hôpital dans le département \(i\in r\) sur la période \(t\), où \(t\) est une fenêtre de 7 jours.
  • \(x_{i,t'}\) est le nombre de testés positifs dans le département \(i\in r\) sur la période \(t'\)\(t'\) correspond à la fenêtre \(t\), décalé de 10 jours.

En d’autres termes, on fait ici un modèle de régression par région. Cela suppose que le lien entre les tests virologiques et le nombre d’hospitalisation est homogène à l’intérieur d’une région et peut différer d’une région à une autre.

Apprentissage:

On modélise sur les observations des semaines précédentes:

res_lm <- lm(hosp ~  region + tranche_0:region - 1, 
             data = my_basis[!(my_basis$semaine %in% c("semaine_t0-2", "semaine_t0-1", "semaine_t00")), ])
stargazer::stargazer(res_lm, type = "html")
Dependent variable:
hosp
regionAuvergne-Rhône-Alpes 14.031***
(1.690)
regionBourgogne-Franche-Comté 10.421***
(2.247)
regionBretagne 4.176
(3.336)
regionCentre-Val de Loire 8.927***
(2.722)
regionCorse 2.152
(4.640)
regionDOM-TOM 3.549
(2.886)
regionGrand Est 12.508***
(2.003)
regionHauts-de-France 28.390***
(2.682)
regionIle-de-France 28.661***
(2.626)
regionNormandie 6.393**
(2.860)
regionNouvelle-Aquitaine 2.825
(1.793)
regionOccitanie 3.554**
(1.649)
regionPays de la Loire 14.138***
(2.961)
regionProvence-Alpes-Côte d’Azur 9.556***
(2.530)
regionAuvergne-Rhône-Alpes:tranche_0 0.063***
(0.001)
regionBourgogne-Franche-Comté:tranche_0 0.073***
(0.003)
regionBretagne:tranche_0 0.058***
(0.004)
regionCentre-Val de Loire:tranche_0 0.059***
(0.004)
regionCorse:tranche_0 0.043*
(0.023)
regionDOM-TOM:tranche_0 0.084***
(0.006)
regionGrand Est:tranche_0 0.069***
(0.002)
regionHauts-de-France:tranche_0 0.056***
(0.001)
regionIle-de-France:tranche_0 0.058***
(0.001)
regionNormandie:tranche_0 0.070***
(0.003)
regionNouvelle-Aquitaine:tranche_0 0.061***
(0.002)
regionOccitanie:tranche_0 0.053***
(0.002)
regionPays de la Loire:tranche_0 0.049***
(0.003)
regionProvence-Alpes-Côte d’Azur:tranche_0 0.080***
(0.001)
Observations 4,343
R2 0.929
Adjusted R2 0.928
Residual Std. Error 33.345 (df = 4315)
F Statistic 2,002.699*** (df = 28; 4315)
Note: p<0.1; p<0.05; p<0.01

On représente comme si on on avait fait un modèle par région pour faciliter la lecture des coefficients :

stargazer::stargazer(res_lm_r1, res_lm_r2, res_lm_r3, res_lm_r4, res_lm_r5, res_lm_r6, res_lm_r7, 
                     res_lm_r8, res_lm_r9, res_lm_r10, res_lm_r11, res_lm_r12, res_lm_r13, res_lm_r14, 
                     type = "html", column.labels = nom_region)
Dependent variable:
hosp
Auvergne-Rhône-Alpes Hauts-de-France Provence-Alpes-Côte d’Azur Grand Est Occitanie Normandie Nouvelle-Aquitaine Centre-Val de Loire Bourgogne-Franche-Comté Bretagne Corse Pays de la Loire Ile-de-France DOM-TOM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
tranche_0 0.063*** 0.056*** 0.080*** 0.069*** 0.053*** 0.070*** 0.061*** 0.059*** 0.073*** 0.058*** 0.043*** 0.049*** 0.058*** 0.084***
(0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.005) (0.002) (0.001) (0.004)
Constant 14.031*** 28.390*** 9.556** 12.508*** 3.554*** 6.393*** 2.825*** 8.927*** 10.421*** 4.176** 2.152** 14.138*** 28.661*** 3.549*
(2.022) (4.634) (4.602) (1.797) (0.765) (2.226) (0.874) (1.486) (2.047) (1.880) (0.991) (2.126) (3.905) (1.946)
Observations 516 215 258 430 559 215 516 258 344 172 86 215 344 215
R2 0.914 0.894 0.895 0.819 0.896 0.847 0.834 0.745 0.718 0.779 0.472 0.735 0.879 0.680
Adjusted R2 0.914 0.893 0.895 0.818 0.896 0.846 0.834 0.744 0.717 0.778 0.466 0.734 0.879 0.679
Residual Std. Error 39.895 (df = 514) 57.613 (df = 213) 60.659 (df = 256) 29.907 (df = 428) 15.468 (df = 557) 25.947 (df = 213) 16.260 (df = 514) 18.208 (df = 256) 30.380 (df = 342) 18.792 (df = 170) 7.118 (df = 84) 23.944 (df = 213) 49.579 (df = 342) 22.492 (df = 213)
F Statistic 5,480.574*** (df = 1; 514) 1,790.817*** (df = 1; 213) 2,190.935*** (df = 1; 256) 1,931.547*** (df = 1; 428) 4,794.077*** (df = 1; 557) 1,177.175*** (df = 1; 213) 2,590.689*** (df = 1; 514) 748.393*** (df = 1; 256) 870.028*** (df = 1; 342) 600.008*** (df = 1; 170) 75.189*** (df = 1; 84) 591.394*** (df = 1; 213) 2,483.855*** (df = 1; 342) 453.017*** (df = 1; 213)
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle:

pred_1 <- predict(res_lm, newdata = my_basis[my_basis$semaine == "semaine_t00", ])
plot(pred_1, my_basis[my_basis$semaine == "semaine_t00", "hosp"],
     xlab = "valeurs prédites", ylab = "valeurs observées")
abline(a = 0, b = 1)
text(pred_1, my_basis[my_basis$semaine == "semaine_t00", "hosp"], 
     my_basis[my_basis$semaine == "semaine_t00", "dep"], pos = 2)

L’écart quadratique moyen est égal ici à :

mean((pred_1 - my_basis[my_basis$semaine == "semaine_t00", "hosp"]) ^ 2, na.rm = T)
## [1] 1642.274

5.2 Modèle linéaire 2 (sur les région) : 1 modèle par classe d’âge

Ici, on va faire un modèle qui prend en compte les classes d’âges. Les données d’hospitalisation par classe d’âge ne sont disponibles que par région. Le modèle est de la forme

\[y_{i,t}^a=\beta_0^a+\beta_1^ax_{i,t'}^a+\epsilon_{i,t}^a\] avec:

  • \(y_{i,t}\) le nombre d’entrées de la classe d’âge \(a\) à l’hôpital dans la région \(i\) sur la période \(t\), où \(t\) est une fenêtre de 7 jours.

  • \(x_{i,t'}\) est le nombre de testés positifs de la classe d’âge \(a\) dans la région \(i\) sur la période \(t'\)\(t'\) correspond à la fenêtre \(t\), décalé de 10 jours.

En d’autres termes, on fait ici un modèle de régression par classe d’âge, toute région confondue. Cela suppose que le lien entre les tests virologiques et le nombre d’hospitalisation est homogène dans une classe d’âge quelque soit les régions.

On merge avec le nombre de test positifs:

# débord on aggrège le nombre de testés positifs par région
test_by <- merge(test_by, dep_region, by = "dep")
test_reg <- aggregate(test_by[, c("tranche_9", "tranche_19", "tranche_29", "tranche_39", 
                                   "tranche_49", "tranche_59", "tranche_69", "tranche_79", 
                                   "tranche_89", "tranche_90", "tranche_0")], 
                      by = list(
  semaine = test_by$semaine,
  region = test_by$region), FUN = sum)
# ensuite, on fait le merge
my_basis_age_wide <- merge(my_basis_age_wide, test_reg, by = c("semaine", "region"))

Apprentissage:

On modélise sur les observations des semaines précédentes et on représente les résultats tranche d’âge par tranche d’âge

apprentissage_sample <- my_basis_age_wide[!(my_basis_age_wide$semaine %in% 
                                              c("semaine_t0-2", "semaine_t0-1", "semaine_t00")), ]
res_lm_9 <- lm(hosp_9 ~  tranche_9, data = apprentissage_sample)
res_lm_19 <- lm(hosp_19 ~  tranche_19, data = apprentissage_sample)
res_lm_29 <- lm(hosp_29 ~  tranche_29, data = apprentissage_sample)
res_lm_39 <- lm(hosp_39 ~  tranche_39, data = apprentissage_sample)
res_lm_49 <- lm(hosp_49 ~  tranche_49, data = apprentissage_sample)
res_lm_59 <- lm(hosp_59 ~  tranche_59, data = apprentissage_sample)
res_lm_69 <- lm(hosp_69 ~  tranche_69, data = apprentissage_sample)
res_lm_79 <- lm(hosp_79 ~  tranche_79, data = apprentissage_sample)
res_lm_89 <- lm(hosp_89 ~  tranche_89, data = apprentissage_sample)
res_lm_90 <- lm(hosp_90 ~  tranche_90, data = apprentissage_sample)
stargazer::stargazer(res_lm_9, res_lm_19, res_lm_29, res_lm_39, res_lm_49, res_lm_59,
                     res_lm_69, res_lm_79, res_lm_89, res_lm_90, type = "html")
Dependent variable:
hosp_9 hosp_19 hosp_29 hosp_39 hosp_49 hosp_59 hosp_69 hosp_79 hosp_89 hosp_90
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
tranche_9 0.012***
(0.001)
tranche_19 0.004***
(0.0001)
tranche_29 0.008***
(0.0002)
tranche_39 0.015***
(0.0003)
tranche_49 0.024***
(0.0004)
tranche_59 0.050***
(0.001)
tranche_69 0.109***
(0.001)
tranche_79 0.224***
(0.004)
tranche_89 0.345***
(0.005)
tranche_90 0.286***
(0.005)
Constant 0.824*** 0.985*** 2.639*** 3.167*** 3.983*** 4.458*** 8.271*** 12.011*** 15.223*** 10.789***
(0.225) (0.192) (0.368) (0.503) (0.659) (1.155) (1.532) (2.395) (2.800) (1.705)
Observations 602 602 602 602 602 602 602 602 602 602
R2 0.393 0.538 0.771 0.834 0.866 0.888 0.908 0.872 0.879 0.820
Adjusted R2 0.392 0.538 0.771 0.833 0.866 0.888 0.908 0.872 0.878 0.820
Residual Std. Error (df = 600) 4.544 3.879 7.589 10.489 13.691 23.884 31.538 48.838 56.374 34.497
F Statistic (df = 1; 600) 387.780*** 699.982*** 2,019.294*** 3,008.759*** 3,891.306*** 4,752.508*** 5,934.137*** 4,095.112*** 4,343.303*** 2,733.869***
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle. On revient sur les données départementales, on suppose donc que les modèles estimés pour chaque tranche d’âge sur les régions est valable aussi pour les départements.

test_sample <- my_basis[my_basis$semaine == "semaine_t00", ]
pred_9 <- predict(res_lm_9, newdata = test_sample)
pred_19 <- predict(res_lm_19, newdata = test_sample)
pred_29 <- predict(res_lm_29, newdata = test_sample)
pred_39 <- predict(res_lm_39, newdata = test_sample)
pred_49 <- predict(res_lm_49, newdata = test_sample)
pred_59 <- predict(res_lm_59, newdata = test_sample)
pred_69 <- predict(res_lm_69, newdata = test_sample)
pred_79 <- predict(res_lm_79, newdata = test_sample)
pred_89 <- predict(res_lm_89, newdata = test_sample)
pred_90 <- predict(res_lm_90, newdata = test_sample)

On a donc une prédiction par tranche d’âge et pour obtenir la prédiction finale, il faut donc faire la somme sur les différentes prédictions :

pred_2 <- pred_9 + pred_19 + pred_29 + pred_39 + pred_49 + pred_59 + pred_69 + 
  pred_79 + pred_89 + pred_90
plot(pred_2, my_basis[my_basis$semaine == "semaine_t00", "hosp"],
     xlab = "valeurs prédites", ylab = "valeurs observées")
abline(a = 0, b = 1)
text(pred_2, my_basis[my_basis$semaine == "semaine_t00", "hosp"], 
     my_basis[my_basis$semaine == "semaine_t00", "dep"], pos = 2)

L’écart quadratique moyen est égal ici à :

mean((pred_2 - my_basis[my_basis$semaine == "semaine_t00", "hosp"]) ^ 2, na.rm = T)
## [1] 4152.579

5.3 Modèle de série temporelle

On utilise la même stratégie que celle présentée pour prédire le nombre de cas positifs.

Etape d’apprentissage : on entraîne l’agorithme sur les données passées en enlevant la dernière semaine observée et on prédit sur cette semaine afin de calculer les écarts quadratiques avec les valeurs observées.

nom_dep <- my_basis[my_basis$semaine == "semaine_t00", "dep"]
pred_3a <- numeric(length(nom_dep))
pred_3b <- numeric(length(nom_dep))
pred_3c <- numeric(length(nom_dep))
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-2", "semaine_t0-1", "semaine_t00")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_hosp, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_3[k] <- NA
  } else {
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
    pred_3a[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    # modèles exponentiels
    # Méthode 2 : lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b[k] <- round(sum(forecast_my_mod_exp[1:7]), 0)
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-2", "semaine_t0-1", "semaine_t00")), ]
    my_ts_exp <- zoo(temp$hosp, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c[k] <- round(forecast_my_mod_exp[1], 0)
  }
}

On obtient le graphique suivant de valeurs prédites/valeurs observées :

op <- par(mfrow = c(1, 3), oma = c(0, 0, 0, 0))
plot(pred_3a, my_basis[my_basis$semaine == "semaine_t00", "hosp"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Box-Jenkins")
abline(a = 0, b = 1)
text(pred_3a, my_basis[my_basis$semaine == "semaine_t00", "hosp"], 
     my_basis[my_basis$semaine == "semaine_t00", "dep"], pos = 2)
plot(pred_3b, my_basis[my_basis$semaine == "semaine_t00", "hosp"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Lissage exponentiel journalier")
abline(a = 0, b = 1)
text(pred_3b, my_basis[my_basis$semaine == "semaine_t00", "hosp"], 
     my_basis[my_basis$semaine == "semaine_t00", "dep"], pos = 2)
plot(pred_3c, my_basis[my_basis$semaine == "semaine_t00", "hosp"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Lissage exponentiel hebdomadaire")
abline(a = 0, b = 1)
text(pred_3c, my_basis[my_basis$semaine == "semaine_t00", "hosp"], 
     my_basis[my_basis$semaine == "semaine_t00", "dep"], pos = 2)

par(op)

L’écart quadratique moyen est égal ici à :

c(mean((pred_3a - my_basis[my_basis$semaine == "semaine_t00", "hosp"]) ^ 2, na.rm = T),
  mean((pred_3b - my_basis[my_basis$semaine == "semaine_t00", "hosp"]) ^ 2, na.rm = T),
  mean((pred_3c - my_basis[my_basis$semaine == "semaine_t00", "hosp"]) ^ 2, na.rm = T)
)
## [1] 1423.128  928.703 1430.277

Les 3 prédictions sont très proches et on va choisir un algorithme de type stepwise sur les prédictions pour choisir la meilleure combinaison des modèles de séries temporelles.

lm_3_ts <- step(lm(my_basis[my_basis$semaine == "semaine_t00", "hosp"] ~ pred_3a + pred_3b + pred_3c - 1))
## Start:  AIC=679.28
## my_basis[my_basis$semaine == "semaine_t00", "hosp"] ~ pred_3a + 
##     pred_3b + pred_3c - 1
## 
##           Df Sum of Sq   RSS    AIC
## - pred_3c  1      90.0 79414 677.40
## <none>                 79324 679.28
## - pred_3a  1    8492.3 87816 687.56
## - pred_3b  1   16241.7 95565 696.10
## 
## Step:  AIC=677.4
## my_basis[my_basis$semaine == "semaine_t00", "hosp"] ~ pred_3a + 
##     pred_3b - 1
## 
##           Df Sum of Sq    RSS    AIC
## <none>                  79414 677.40
## - pred_3a  1      8974  88388 686.21
## - pred_3b  1     59569 138983 731.93
pred_3 <- predict(lm_3_ts)
mean((pred_3 - na.omit(my_basis[my_basis$semaine == "semaine_t00", "hosp"])) ^ 2)
## [1] 786.2736

On a donc 3 prédictions obtenues selon :

  • modèle par région
  • modèle par classe d’âge
  • modèle de séries temporelles (lui-même combinaison de plusieurs méthodes)

5.4 Combinaison des prédictions

Combinaison des prédictions:

  • pour prédire les nouvelles hospitalisations la semaine à venir, on va faire un panaché des trois prédictions en donnant plus de poids à la prédiction qui a le mieux marcher sur la semaine \(t_0\). Autrement dit, on fait un modèle linéaire (avec une procédure stepwise) du nombre d’hospitalisation en fonction des 3 méthodes de prédictions. On calcule l’écart quatratique moyen de la combinaison des prédictions.
lm_3 <- lm(my_basis[my_basis$semaine == "semaine_t00", "hosp"] ~ pred_1 + pred_2 + pred_3 - 1)
mean((predict(lm_3) - na.omit(my_basis[my_basis$semaine == "semaine_t00", "hosp"])) ^ 2)
## [1] 709.9264
  • pour prédire les nouvelles hospitalisations la semaine d’après, on va utiliser une autre pondération en utilisant la même procédure que précédemment, mais dans une optique de prédire à deux semaines.
## Start:  AIC=1391.46
## y_true ~ pred_3a_s2 + pred_3b_s2 + pred_3c_s2 - 1
## 
##              Df Sum of Sq    RSS    AIC
## <none>                    192330 1391.5
## - pred_3a_s2  1    5801.1 198131 1395.5
## - pred_3b_s2  1    8714.5 201045 1398.4
## - pred_3c_s2  1   23618.9 215949 1412.9

5.5 Prédiction

On prédit le nombre d’hospitalisations :

  • du [27 mars 2021; 02 avril 2021] en utilisant les vrais valeurs du nombre de testé positifs la semaine du [17 mars 2021; 23 mars 2021].

  • du [03 avril 2021; 09 avril 2021] en utilisant les valeurs prédites du nombre de testé positifs la semaine du [24 mars 2021; 30 mars 2021].

Avant de faire cela, on actualise en incluant dans l’étape d’apprentissage les données de la dernière semaine observée:

# modèle 1
res_lm <- lm(hosp ~  tranche_0, data = my_basis[!(my_basis$semaine %in% "semaine_t0-1"), ])
# modèle 2
apprentissage_sample <- my_basis_age_wide[!(my_basis_age_wide$semaine %in% 
                                              c("semaine_t0-1")), ]
res_lm_9 <- lm(hosp_9 ~  tranche_9, data = apprentissage_sample)
res_lm_19 <- lm(hosp_19 ~  tranche_19, data = apprentissage_sample)
res_lm_29 <- lm(hosp_29 ~  tranche_29, data = apprentissage_sample)
res_lm_39 <- lm(hosp_39 ~  tranche_39, data = apprentissage_sample)
res_lm_49 <- lm(hosp_49 ~  tranche_49, data = apprentissage_sample)
res_lm_59 <- lm(hosp_59 ~  tranche_59, data = apprentissage_sample)
res_lm_69 <- lm(hosp_69 ~  tranche_69, data = apprentissage_sample)
res_lm_79 <- lm(hosp_79 ~  tranche_79, data = apprentissage_sample)
res_lm_89 <- lm(hosp_89 ~  tranche_89, data = apprentissage_sample)
res_lm_90 <- lm(hosp_90 ~  tranche_90, data = apprentissage_sample)

# On prédit avec la méthode 1 
new_data <- my_basis[my_basis$semaine %in% c("semaine_t0-1", "semaine_t0-2"), ]
pred_1 <- predict(res_lm, newdata = new_data)
# On prédit avec la méthode 2
test_sample <- my_basis[my_basis$semaine %in% c("semaine_t0-1", "semaine_t0-2"), ]
pred_9 <- predict(res_lm_9, newdata = test_sample)
pred_19 <- predict(res_lm_19, newdata = test_sample)
pred_29 <- predict(res_lm_29, newdata = test_sample)
pred_39 <- predict(res_lm_39, newdata = test_sample)
pred_49 <- predict(res_lm_49, newdata = test_sample)
pred_59 <- predict(res_lm_59, newdata = test_sample)
pred_69 <- predict(res_lm_69, newdata = test_sample)
pred_79 <- predict(res_lm_79, newdata = test_sample)
pred_89 <- predict(res_lm_89, newdata = test_sample)
pred_90 <- predict(res_lm_90, newdata = test_sample)
pred_2 <- pred_9 + pred_19 + pred_29 + pred_39 + pred_49 + pred_59 + pred_69 + 
  pred_79 + pred_89 + pred_90

# on prédit avec le modèle 3, mais on actualise les prédictions semaine par semaine
pred_3 <- matrix(0, length(nom_dep), 2)
for (k in 1:length(nom_dep)) {
 if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_3[k, ] <- NA
  } else {
    temp <- hospital[!(hospital$semaine %in% c("semaine_t0-2", "semaine_t0-1")) & 
                     hospital$dep == nom_dep[k], ]
    my_ts <- zoo(temp$incid_hosp, temp$jour)
    my_ts_diff <- diff(my_ts)
    # tseries::adf.test(my_ts) 
    # tseries::adf.test(my_ts_diff)
    # predictions à 7 jours
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod, h = 14)$mean)
    pred_3a_s1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    # prediction à 14 jours
    pred_3a_s2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - pred_3a_s1
    # Lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 14)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b_s1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
    pred_3b_s2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - pred_3b_s1
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-2", "semaine_t0-1")), ]
    my_ts_exp <- zoo(temp$hosp, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c_s1 <- round(forecast_my_mod_exp[1], 0)
    pred_3c_s2 <- round(forecast_my_mod_exp[2], 0)
    
    # prédictions des time series
    pred_3[k, 1] <- predict(lm_3_ts, newdata = data.frame(pred_3a = pred_3a_s1,
                                                 pred_3b = pred_3b_s1,
                                                 pred_3c = pred_3c_s1))
    
    # prediction à 14 jours
    pred_3[k, 2] <- predict(lm_3b_ts, newdata = data.frame(pred_3a_s2 = pred_3a_s2,
                                                 pred_3b_s2 = pred_3b_s2,
                                                 pred_3c_s2 = pred_3c_s2))
  }
}
pred_3 <- as.vector(pred_3)
# On fait le mélande des deux prédictions
res_pred_a <- predict(lm_3, newdata = data.frame(pred_1 = pred_1[new_data$semaine == "semaine_t0-1"], 
                                               pred_2 = pred_2[test_sample$semaine == "semaine_t0-1"],
                                               pred_3 = pred_3[1:(length(pred_3) / 2)]))
res_pred_b <- predict(lm_3b, newdata = data.frame(
  pred_1_s2 = pred_1[new_data$semaine == "semaine_t0-2"],
  pred_2_s2 = pred_2[test_sample$semaine == "semaine_t0-2"],
  pred_3_s2 = pred_3[((length(pred_3) / 2) + 1):length(pred_3)]))
new_data <- my_basis[my_basis$semaine %in% "semaine_t0-1", ]
my_basis[my_basis$semaine %in% "semaine_t0-1", "hosp"] <- res_pred_a
my_basis[my_basis$semaine %in% "semaine_t0-2", "hosp"] <- res_pred_b
new_data$next_week <- res_pred_a
new_data$next_two_week <- res_pred_b

On va représenter l’évolution du nombre de nouveaux patients hospitalisés dans un intervalle de temps de 4 semaines :

  • la semaine du [13 mars 2021; 19 mars 2021]
  • les 7 derniers jours passés : [20 mars 2021; 26 mars 2021]
  • la semaine à venir : [27 mars 2021; 02 avril 2021]
  • la semaine suivante à venir : [03 avril 2021; 09 avril 2021]
new_data[, "last_week"] <- my_basis[my_basis$semaine == "semaine_t01", "hosp"]
new_data[, "this_week"] <- my_basis[my_basis$semaine == "semaine_t00", "hosp"]
new_data_long <- tidyr::pivot_longer(data = select(new_data, dep, region, last_week, this_week, next_week, next_two_week),
                                   col = 3:6,
                                   names_to = "semaine",
                                   values_to = "hospitalisations")
new_data_long$semaine <- factor(new_data_long$semaine,
      levels = c("last_week", "this_week", "next_week", "next_two_week"),
      labels = c(paste0("[", format(to_day - 14, '%d %b'), "; ",  
                        format(to_day - 8, '%d %b'), "]"),
                 paste0("[", format(to_day - 7, '%d %b'), "; ",  
                        format(to_day - 1, '%d %b'), "]"),
                 paste0("[", format(to_day, '%d %b'), "; ",  
                        format(to_day + 6, '%d %b'), "]"),
                    paste0("[", format(to_day + 7, '%d %b'), "; ",  
                        format(to_day + 13, '%d %b'), "]"))
      )
# On ajoute aux données de la semaine dernière :
new_data_long$region <- factor(new_data_long$region, levels = hosp_region$region)
p <- ggplot(new_data_long, aes(x = semaine, y = hospitalisations, group = dep))+
    geom_line() +
  facet_wrap(~region)
plotly::ggplotly(p)

On aggrège les données à la France entière:

  my_basis_fr <- my_basis %>%
    group_by(semaine, jour) %>%
    summarise(hosp = sum(hosp),
              rea = sum(rea),
              dc = sum(dc))
  p <- ggplot(data = filter(my_basis_fr, semaine %in% c("semaine_t0-2", "semaine_t0-1", "semaine_t00")),
              aes(x = jour, y = hosp)) +
    geom_line(col = "red") +
    geom_line(data = filter(my_basis_fr, !(semaine %in% c("semaine_t0-2", "semaine_t0-1"))), 
              aes(x = jour, y = hosp)) +
  labs(title = "Prédiction des nouvelles hospitalisations dans les 14 jours",
       x = "semaine",
       y = "hospitalisations",
       fill = "Age") 
plotly::ggplotly(p)

6 Prédire le nombre de réanimations

L’idée est d’expliquer le nombre de nouvelles réanimations la semaine \(t\) par le nombre de nouvelles hospitalisations la semaine \(t-1\).

Ainsi on sera en mesure de prédire le nombre de nouvelles réanimations d’une part la semaine à venir, mais aussi la semaine d’après si on utilise les prédictions du nombre d’hospitalisation la semaine à venir.

On prépare les données et on représente le nombre de nouvelles réanimations par semaine et par département en fonction du nombre de nouvelles hospitalisations la semaine d’avant et on constate un lien très fort.

my_basis_temp <- my_basis %>% 
  filter(semaine == "semaine_t0-2")
my_basis_temp$hosp <- NA
my_basis_temp$semaine <- "semaine_t0-3"
my_basis_temp$jour <- my_basis_temp$jour + 7
my_basis_temp[, paste0("tranche_", c(9, 19, 29, 39, 49, 59, 69, 79, 89, 90, 0))] <- NA
my_basis <- rbind(my_basis_temp, my_basis)
my_basis_rea <- my_basis %>%
  select(dep, semaine, jour, region, rea)
temp_hosp <- my_basis %>%
  select(dep, jour, hosp) %>%
  mutate(jour = jour + 7)
my_basis_rea <- merge(my_basis_rea, temp_hosp, by = c("jour", "dep"), all.x = T)
my_basis_rea <- my_basis_rea %>%
  as.data.frame
my_basis_rea <- my_basis_rea[order(my_basis_rea$jour, decreasing = T), ]
p <- ggplot(my_basis_rea) +                
  aes(x = hosp, y = rea) +     
  geom_point() +                  
  geom_smooth(method = "loess") + 
  geom_smooth(method = "lm",     
              col = "red") +
  facet_wrap(~ region)
plotly::ggplotly(p)

On ne va faire que deux modèles :

On n’utilise pas le modèle qui utilise les classes d’âges car c’est difficile d’avoir le nombre de nouvelles réanimations par jour/département par classe d’âge. Il se peut donc que les prédictions soient sous-estimées dans le cas où la distribution des patients hospitalisés agés évolue positivement au cours du temps.

6.1 Modèle 1 : modèle linéaire

Apprentissage:

On modélise sur les observations des semaines précédentes:

res_lm_rea_1 <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% c("semaine_t0-2", "semaine_t0-1", "semaine_t00")), ])
stargazer::stargazer(res_lm_rea_1, type = "html")
Dependent variable:
rea
regionAuvergne-Rhône-Alpes -0.422
(0.427)
regionBourgogne-Franche-Comté 1.078*
(0.565)
regionBretagne 0.896
(0.811)
regionCentre-Val de Loire -0.053
(0.706)
regionCorse 0.865
(1.105)
regionDOM-TOM 1.686**
(0.686)
regionGrand Est -0.098
(0.513)
regionHauts-de-France -0.456
(0.692)
regionIle-de-France -2.777***
(0.684)
regionNormandie 0.576
(0.707)
regionNouvelle-Aquitaine -0.047
(0.439)
regionOccitanie -0.134
(0.409)
regionPays de la Loire 0.598
(0.789)
regionProvence-Alpes-Côte d’Azur -1.164*
(0.620)
regionAuvergne-Rhône-Alpes:hosp 0.160***
(0.003)
regionBourgogne-Franche-Comté:hosp 0.116***
(0.008)
regionBretagne:hosp 0.111***
(0.016)
regionCentre-Val de Loire:hosp 0.173***
(0.014)
regionCorse:hosp 0.130
(0.090)
regionDOM-TOM:hosp 0.125***
(0.014)
regionGrand Est:hosp 0.153***
(0.006)
regionHauts-de-France:hosp 0.187***
(0.003)
regionIle-de-France:hosp 0.219***
(0.003)
regionNormandie:hosp 0.129***
(0.008)
regionNouvelle-Aquitaine:hosp 0.158***
(0.009)
regionOccitanie:hosp 0.210***
(0.007)
regionPays de la Loire:hosp 0.129***
(0.012)
regionProvence-Alpes-Côte d’Azur:hosp 0.169***
(0.003)
Observations 4,242
R2 0.881
Adjusted R2 0.880
Residual Std. Error 8.055 (df = 4214)
F Statistic 1,113.428*** (df = 28; 4214)
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle:

pred_rea_1 <- predict(res_lm_rea_1, newdata = my_basis_rea[my_basis_rea$semaine == "semaine_t00", ])
plot(pred_rea_1, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"],
     xlab = "valeurs prédites", ylab = "valeurs observées")
abline(a = 0, b = 1)
text(pred_rea_1, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"], 
     my_basis_rea[my_basis_rea$semaine == "semaine_t00", "dep"], pos = 2)

L’écart quadratique moyen est égal ici à :

mean((pred_rea_1 - my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]) ^ 2, na.rm = T)
## [1] 391.6882

6.2 Modèle 2 : série temporelle

On utilise la même stratégie que celle présentée pour prédire le nombre de nouveaux cas positifs et de nouvelles réanimations.

Etape d’apprentissage : on entraîne l’agorithme sur les données passées en enlevant la dernière semaine observée et on prédit sur cette semaine afin de calculer les écarts quadratiques avec les valeurs observées.

nom_dep <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "dep"]
pred_rea_2a <- numeric(length(nom_dep))
pred_rea_2b <- numeric(length(nom_dep))
pred_rea_2c <- numeric(length(nom_dep))
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-2", "semaine_t0-1", "semaine_t00")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_rea, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_rea_2[k] <- NA
  } else {
    # box jenkins
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
    pred_rea_2a[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    # modèles exponentiels
    # Méthode 2 : lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_rea_2b[k] <- round(sum(forecast_my_mod_exp[1:7]), 0)
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")), ]
    my_ts_exp <- zoo(temp$rea, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_rea_2c[k] <- round(forecast_my_mod_exp[1], 0)
  }
}

On observe le graphique des valeurs prédites/valeurs observées :

op <- par(mfrow = c(1, 3), oma = c(0, 0, 0, 0))
plot(pred_rea_2a, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Box-Jenkins")
abline(a = 0, b = 1)
text(pred_rea_2a, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"], 
     my_basis_rea[my_basis_rea$semaine == "semaine_t00", "dep"], pos = 2)
plot(pred_rea_2b, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Lissage exponentiel journalier")
abline(a = 0, b = 1)
text(pred_rea_2b, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"], 
     my_basis_rea[my_basis_rea$semaine == "semaine_t00", "dep"], pos = 2)
plot(pred_rea_2c, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Lissage exponentiel hebdomadaire")
abline(a = 0, b = 1)
text(pred_rea_2c, my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"], 
     my_basis_rea[my_basis_rea$semaine == "semaine_t00", "dep"], pos = 2)

L’écart quadratique moyen est égal ici à :

c(mean((pred_rea_2a - my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]) ^ 2, na.rm = T), 
  mean((pred_rea_2b - my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]) ^ 2, na.rm = T),
  mean((pred_rea_2c - my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]) ^ 2, na.rm = T)
)
## [1] 113.19143  91.23762  92.76238

Les 3 prédictions sont très proches et on va choisir un algorithme de type stepwise sur les prédictions pour choisir la meilleure combinaison et ne conserver qu’une seule prédiction basée sur les séries temporelles:

lm_2_rea_ts <- step(lm(my_basis[my_basis$semaine == "semaine_t00", "rea"] ~ 
                         pred_rea_2a + pred_rea_2b + pred_rea_2c - 1))
## Start:  AIC=428.29
## my_basis[my_basis$semaine == "semaine_t00", "rea"] ~ pred_rea_2a + 
##     pred_rea_2b + pred_rea_2c - 1
## 
##               Df Sum of Sq    RSS    AIC
## - pred_rea_2b  1     28.95 6638.3 426.73
## <none>                     6609.3 428.29
## - pred_rea_2a  1    389.98 6999.3 432.08
## - pred_rea_2c  1   2260.69 8870.0 456.01
## 
## Step:  AIC=426.73
## my_basis[my_basis$semaine == "semaine_t00", "rea"] ~ pred_rea_2a + 
##     pred_rea_2c - 1
## 
##               Df Sum of Sq     RSS    AIC
## <none>                      6638.3 426.73
## - pred_rea_2a  1     537.0  7175.3 432.59
## - pred_rea_2c  1    4635.4 11273.7 478.23
pred_rea_2 <- predict(lm_2_rea_ts)
mean((pred_rea_2 - na.omit(my_basis[my_basis$semaine == "semaine_t00", "rea"])) ^ 2)
## [1] 65.7257

6.3 Combinaison des prédictions

Combinaison des prédictions: on peut envisager de faire un panaché des deux prédictions. Autrement dit, on fait un modèle linéaire (avec une procédure stepwise) du nombre de réanimations observée la semaine t0 en fonction des 2 méthodes de prédictions. On obtient l’écart-quadratique moyen suivant:

lm_rea_3 <- lm(my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"] ~ 
                 pred_rea_1 + pred_rea_2 - 1)
mean((predict(lm_rea_3) - na.omit(my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"])) ^ 2)
## [1] 64.4667

On adapte le poids des prédictions en fonction de la semaine à prédire

semaine_to_drop <- c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")
pred_rea_1_s2 <- pred_rea_1
pred_rea_2a_s2 <- pred_rea_2a
pred_rea_2b_s2 <- pred_rea_2b
pred_rea_2c_s2 <- pred_rea_2c

y_true <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]

for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "rea"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 1))
  res_lm_rea_1 <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% semaine_to_drop), ])
  pred_rea_1_s2 <- c(pred_rea_1_s2, 
     round(predict(res_lm_rea_1, newdata = my_basis_rea[my_basis_rea$semaine == semaine_to_estim, ])))
  pred_rea_2a_temp <- numeric(length(nom_dep))
  pred_rea_2b_temp <- numeric(length(nom_dep))
  pred_rea_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
    temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & 
                     hospital$dep == nom_dep[k], ]
    my_ts <- zoo(temp$incid_rea, temp$jour)
    my_ts_diff <- diff(my_ts)
    # tseries::adf.test(my_ts) 
    # tseries::adf.test(my_ts_diff)
    if (nom_dep[k] %in% c("975", "977", "978")) {
      pred_rea_2[k] <- NA
    } else {
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod, h = 14)$mean)
      temp <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
      pred_rea_2a_temp[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp
      # modèles exponentiels
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 14)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      temp <- round(sum(forecast_my_mod_exp[1:7]), 0)
      pred_rea_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
      my_ts_exp <- zoo(temp$rea, temp$jour)
      if (all(my_ts_exp == 0)) {
        pred_rea_2c_temp[k] <- 0
      } else {
        my_mod_exp_2 <- ets(my_ts_exp)
        forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
        forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
        pred_rea_2c_temp[k] <- round(forecast_my_mod_exp[2], 0)
      }
    }
    
  }
   pred_rea_2a_s2 <- c(pred_rea_2a_s2, pred_rea_2a_temp)
   pred_rea_2b_s2 <- c(pred_rea_2b_s2, pred_rea_2b_temp)
   pred_rea_2c_s2 <- c(pred_rea_2c_s2, pred_rea_2c_temp)
}


lm_2_rea_ts_s1 <- step(lm(y_true ~ pred_rea_2a_s2 + pred_rea_2b_s2 + pred_rea_2c_s2 - 1))
## Start:  AIC=867.1
## y_true ~ pred_rea_2a_s2 + pred_rea_2b_s2 + pred_rea_2c_s2 - 1
## 
##                  Df Sum of Sq   RSS    AIC
## <none>                        14345 867.10
## - pred_rea_2b_s2  1     855.3 15200 876.80
## - pred_rea_2a_s2  1    1504.9 15850 885.25
## - pred_rea_2c_s2  1    7243.2 21588 947.67
pred_rea_2_s2 <- predict(lm_2_rea_ts_s1)

lm_rea_3b <- lm(y_true ~ pred_rea_1_s2 + pred_rea_2_s2 - 1)



#######

semaine_to_drop <- c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00", "semaine_t01")
pred_rea_1_s3 <- pred_rea_1
pred_rea_2a_s3 <- pred_rea_2a
pred_rea_2b_s3 <- pred_rea_2b
pred_rea_2c_s3 <- pred_rea_2c

y_true <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]

for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "rea"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 2))
  
  res_lm_rea_1 <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% semaine_to_drop), ])
  pred_rea_1_s3 <- c(pred_rea_1_s3, round(predict(res_lm_rea_1, newdata = my_basis_rea[my_basis_rea$semaine == semaine_to_estim, ])))
  
  pred_rea_2a_temp <- numeric(length(nom_dep))
  pred_rea_2b_temp <- numeric(length(nom_dep))
  pred_rea_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
     temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & hospital$dep == nom_dep[k], ]
     my_ts <- zoo(temp$incid_rea, temp$jour)
     my_ts_diff <- diff(my_ts)
     # tseries::adf.test(my_ts) 
     # tseries::adf.test(my_ts_diff)
     if (nom_dep[k] %in% c("975", "977", "978")) {
       pred_rea_2[k] <- NA
     } else {
       my_mod <- forecast::auto.arima(my_ts_diff)
       forecast_my_mod <- as.numeric(forecast(my_mod, h = 21)$mean)
       temp1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
       temp2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp1
       pred_rea_2a_temp[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - temp1 - temp2
       # modèles exponentiels
       # Méthode 2 : lissage exponentiel
       my_mod_exp <- ets(my_ts)
       forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 21)$mean)
       forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
       temp1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
       temp2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp1
       pred_rea_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:21]), 0) - temp2 - temp1
       # Méthode 3 : lissage exponentiel sur données hebdomadaires
       temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
       my_ts_exp <- zoo(temp$rea, temp$jour)
       if (all(my_ts_exp == 0)) {
         pred_rea_2c_temp[k] <- 0
       } else {
         my_mod_exp_2 <- ets(my_ts_exp)
         forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
         forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
         pred_rea_2c_temp[k] <- round(forecast_my_mod_exp[3], 0)
       }
    }
}

  pred_rea_2a_s3 <- c(pred_rea_2a_s3, pred_rea_2a_temp)
  pred_rea_2b_s3 <- c(pred_rea_2b_s3, pred_rea_2b_temp)
  pred_rea_2c_s3 <- c(pred_rea_2c_s3, pred_rea_2c_temp)
}

lm_2_rea_ts_s2 <- step(lm(y_true ~ pred_rea_2a_s3 + pred_rea_2b_s3 + pred_rea_2c_s3 - 1))
## Start:  AIC=994.87
## y_true ~ pred_rea_2a_s3 + pred_rea_2b_s3 + pred_rea_2c_s3 - 1
## 
##                  Df Sum of Sq   RSS     AIC
## <none>                        27002  994.87
## - pred_rea_2a_s3  1     641.4 27643  997.61
## - pred_rea_2b_s3  1     892.2 27894  999.44
## - pred_rea_2c_s3  1    6514.9 33517 1036.53
pred_rea_2_s3 <- predict(lm_2_rea_ts_s2)

lm_rea_3c <- lm(y_true ~ pred_rea_1_s3 + pred_rea_2_s3 - 1)

6.4 Prédiction

On prédit:

  • le nombre de réanimations à venir du [27 mars 2021; 02 avril 2021] en utilisant les nouvelles hospitalisations du [20 mars 2021; 26 mars 2021]

  • le nombre de réanimations à venir du [03 avril 2021; 09 avril 2021] en utilisant la prédiction des hospitalisations à venir du [27 mars 2021; 02 avril 2021]

  • le nombre de réanimations à venir du [10 avril 2021; 16 avril 2021] en utilisant la prédiction des hospitalisations à venir du [03 avril 2021; 09 avril 2021]

Pour cela, on actualise le modèle, c’est-à-dire qu’on inclut la dernière semaine observée:

res_lm <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% c("semaine_t0-2", "semaine_t0-1")), ])

# semaine t+1
new_data_rea_1 <- my_basis_rea[my_basis_rea$semaine %in% c("semaine_t0-1", "semaine_t0-2", "semaine_t0-3"),  ]
pred_rea_1 <- predict(res_lm, newdata = new_data_rea_1)

pred_rea_2 <- matrix(0, length(nom_dep), 3)
pred_rea_2a <- matrix(0, length(nom_dep), 3)
pred_rea_2b <- matrix(0, length(nom_dep), 3)
pred_rea_2c <- matrix(0, length(nom_dep), 3)
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_rea, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_rea_2[k] <- NA
  } else {
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod, h = 21)$mean)
    pred_3a_s1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    pred_3a_s2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - pred_3a_s1
    pred_3a_s3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - 
      pred_3a_s1 - pred_3a_s2
    # Lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 21)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b_s1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
    pred_3b_s2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - pred_3b_s1
    pred_3b_s3 <- round(sum(forecast_my_mod_exp[1:21]), 0) - pred_3b_s2 - pred_3b_s1
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1")), ]
    my_ts_exp <- zoo(temp$rea, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c_s1 <- round(forecast_my_mod_exp[1], 0)
    pred_3c_s2 <- round(forecast_my_mod_exp[2], 0)
    pred_3c_s3 <- round(forecast_my_mod_exp[3], 0)    
    
    pred_rea_2[k, 1] <- predict(lm_2_rea_ts, newdata = data.frame(pred_rea_2a = pred_3a_s1,
                                                 pred_rea_2b = pred_3b_s1,
                                                 pred_rea_2c = pred_3c_s1))
    pred_rea_2[k, 2] <- predict(lm_2_rea_ts_s1, newdata = data.frame(pred_rea_2a_s2 = pred_3a_s2,
                                                 pred_rea_2b_s2 = pred_3b_s2,
                                                 pred_rea_2c_s2 = pred_3c_s2))
    pred_rea_2[k, 3] <- predict(lm_2_rea_ts_s2, newdata = data.frame(pred_rea_2a_s3 = pred_3a_s3,
                                                 pred_rea_2b_s3 = pred_3b_s3,
                                                 pred_rea_2c_s3 = pred_3c_s3))
  }
}

pred_rea_a <- predict(lm_rea_3, newdata = data.frame(pred_rea_1 = 
                        pred_rea_1[new_data_rea_1$semaine == "semaine_t0-1"],
                        pred_rea_2 = as.vector(pred_rea_2)[1:(length(pred_rea_1) / 3)]))

pred_rea_b <- predict(lm_rea_3b, newdata = data.frame(
  pred_rea_1_s2 = pred_rea_1[new_data_rea_1$semaine == "semaine_t0-2"],
  pred_rea_2_s2 = as.vector(pred_rea_2)[((length(pred_rea_1) / 3) + 1):(2 * length(pred_rea_1) / 3)]))

pred_rea_c <- predict(lm_rea_3c, newdata = data.frame(
  pred_rea_1_s3 = pred_rea_1[new_data_rea_1$semaine == "semaine_t0-3"],
  pred_rea_2_s3 = as.vector(pred_rea_2)[(2 * length(pred_rea_1) / 3 + 1):length(pred_rea_1)]))

# on synthétise les résultats
new_data <- my_basis[my_basis$semaine %in% "semaine_t0-1", ]
new_data$this_week <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]
new_data$next_week <- pred_rea_a
new_data$next_two_week <- pred_rea_b
new_data$next_three_week <- pred_rea_c
my_basis[my_basis$semaine %in% "semaine_t0-1", "rea"] <- pred_rea_a
my_basis[my_basis$semaine %in% "semaine_t0-2", "rea"] <- pred_rea_b
my_basis[my_basis$semaine %in% "semaine_t0-3", "rea"] <- pred_rea_c

On va représenter l’évolution du nombre de patients en réanimations dans un intervalle de temps de 4 semaines :

  • les 7 derniers jours passés : [20 mars 2021; 26 mars 2021]
  • la semaine à venir : [27 mars 2021; 02 avril 2021]
  • la 2ème semaine à venir : [03 avril 2021; 09 avril 2021]
  • la 3ème semaine à venir : [10 avril 2021; 16 avril 2021]
new_data_long <- tidyr::pivot_longer(data = select(new_data, dep, region, 
                                   this_week, next_week,  next_two_week, next_three_week),
                                   col = 3:6,
                                   names_to = "semaine",
                                   values_to = "rea")
new_data_long$semaine <- factor(new_data_long$semaine,
      levels = c("this_week", "next_week", "next_two_week", "next_three_week"),
      labels = c(paste0("[", format(to_day - 7, '%d %b'), "; ",  
                        format(to_day - 1, '%d %b'), "]"),
                 paste0("[", format(to_day, '%d %b'), "; ",  
                        format(to_day + 6, '%d %b'), "]"),
                 paste0("[", format(to_day+7, '%d %b'), "; ",  
                        format(to_day + 13, '%d %b'), "]"), 
                 paste0("[", format(to_day + 14, '%d %b'), "; ",  
                        format(to_day + 20, '%d %b'), "]")
                 )
      )
new_data_long$region <- factor(new_data_long$region, levels = hosp_region$region)
p <- ggplot(new_data_long, aes(x = semaine, y = rea,  group = dep))+
    geom_line() +
  facet_wrap(~region)
plotly::ggplotly(p)

On aggrège les données à la France entière:

my_basis_fr <- my_basis %>%
  group_by(semaine, jour) %>%
  summarise(rea = sum(rea))
p <- ggplot(data = filter(my_basis_fr, semaine %in% 
                      c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")),
            aes(x = jour, y = rea)) +
  geom_line(col = "red") +
  geom_line(data = filter(my_basis_fr, !(semaine %in% 
                        c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1"))), 
            aes(x = jour, y = rea)) +
  labs(title = "Prédiction des nouvelles réanimations dans les 21 jours",
       x = "semaine",
       y = "réanimations",
       fill = "Age") 
plotly::ggplotly(p)

7 Prédire le nombre de décès

L’idée est d’expliquer le nombre de nouveaux décès la semaine \(t\) par les nouvelles réanimations la semaine \(t-1\).

Ainsi on sera en mesure de prédire le nombre de nouveaux décès la semaine à venir, mais aussi les trois semaines suivantes en utilisant les prédictions des hospitalisations, des réanimations et cas positifs.

On prépare les données et on représente le nombre de nouveaux décès par semaine et par département en fonction du nombre de nouvelles réanimations la semaine d’avant et on constate un lien très fort.

my_basis_temp <- my_basis %>% 
  filter(semaine == "semaine_t0-3")
my_basis_temp$rea <- NA
my_basis_temp$semaine <- "semaine_t0-4"
my_basis_temp$jour <- my_basis_temp$jour + 7
my_basis <- rbind(my_basis_temp, my_basis)
my_basis_dc <- my_basis %>%
  select(dep, semaine, jour, region, dc)
temp_rea <- my_basis %>%
  select(dep, jour, rea) %>%
  mutate(jour = jour + 7)
my_basis_dc <- merge(my_basis_dc, temp_rea, by = c("jour", "dep"), all.x = T)
my_basis_dc <- my_basis_dc %>%
  as.data.frame
my_basis_dc <- my_basis_dc[order(my_basis_dc$jour, decreasing = T), ]

p <- ggplot(my_basis_dc) +                
  aes(x = rea, y = dc) +     
  geom_point() +                  
  geom_smooth(method = "loess") + 
  geom_smooth(method = "lm",     
              col = "red") +
  facet_wrap(~ region)
plotly::ggplotly(p)

On va faire deux modèles : un modèle régional où on explique les nouvelles réanimations des départements au sein d’une même région ainsi qu’un modèle de série temporelle département par département.

7.1 Modèle 1 : modèle linéaire

Apprentissage:

On modélise sur les observations des semaines précédentes:

res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% 
                c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")), ])
stargazer::stargazer(res_lm_dc_1, type = "html")
Dependent variable:
dc
regionAuvergne-Rhône-Alpes 3.867***
(0.412)
regionBourgogne-Franche-Comté 2.847***
(0.539)
regionBretagne 1.573**
(0.794)
regionCentre-Val de Loire 3.581***
(0.621)
regionCorse 0.320
(1.072)
regionDOM-TOM -0.118
(0.697)
regionGrand Est 2.416***
(0.485)
regionHauts-de-France 5.909***
(0.664)
regionIle-de-France 9.511***
(0.607)
regionNormandie 1.251*
(0.687)
regionNouvelle-Aquitaine 2.119***
(0.410)
regionOccitanie 1.663***
(0.392)
regionPays de la Loire 2.282***
(0.722)
regionProvence-Alpes-Côte d’Azur 4.479***
(0.592)
regionAuvergne-Rhône-Alpes:rea 0.927***
(0.015)
regionBourgogne-Franche-Comté:rea 0.968***
(0.050)
regionBretagne:rea 1.026***
(0.115)
regionCentre-Val de Loire:rea 0.519***
(0.063)
regionCorse:rea 0.511
(0.354)
regionDOM-TOM:rea 0.482***
(0.083)
regionGrand Est:rea 1.169***
(0.034)
regionHauts-de-France:rea 0.842***
(0.017)
regionIle-de-France:rea 0.553***
(0.013)
regionNormandie:rea 1.238***
(0.059)
regionNouvelle-Aquitaine:rea 0.762***
(0.048)
regionOccitanie:rea 0.613***
(0.031)
regionPays de la Loire:rea 0.946***
(0.073)
regionProvence-Alpes-Côte d’Azur:rea 0.865***
(0.015)
Observations 4,242
R2 0.862
Adjusted R2 0.862
Residual Std. Error 8.017 (df = 4214)
F Statistic 943.481*** (df = 28; 4214)
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle:

pred_dc_1 <- predict(res_lm_dc_1, newdata = my_basis_dc[my_basis_dc$semaine == "semaine_t00", ])
plot(pred_dc_1, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"],
     xlab = "valeurs prédites", ylab = "valeurs observées")
abline(a = 0, b = 1)
text(pred_dc_1, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"], 
     my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dep"], pos = 2)

L’écart quadratique moyen est égal ici à :

mean((pred_dc_1 - my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"]) ^ 2, na.rm = T)
## [1] 120.3961

7.2 Modèle 2 : série temporelle

On utilise la même stratégie que celle présentée pour prédire le nombre de nouveaux cas, de nouvelles hospitalisations et de nouvelles réanimations.

Etape d’apprentissage : on entraîne l’agorithme sur les données passées en enlevant la dernière semaine observée et on prédit sur cette semaine afin de calculer les écarts quadratiques avec les valeurs observées.

pred_dc_2a <- numeric(length(nom_dep))
pred_dc_2b <- numeric(length(nom_dep))
pred_dc_2c <- numeric(length(nom_dep))
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-1", "semaine_t00")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_dc, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_dc_2[k] <- NA
  } else {
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
    pred_dc_2a[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
     # modèles exponentiels
    # Méthode 2 : lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_dc_2b[k] <- round(sum(forecast_my_mod_exp[1:7]), 0)
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-4", "semaine_t0-3", 
                                            "semaine_t0-2", "semaine_t0-1", "semaine_t00")), ]
    my_ts_exp <- zoo(temp$dc, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_dc_2c[k] <- round(forecast_my_mod_exp[1], 0)
    
    
  }
}

On représente le graphique des valeurs prédites / valeurs observées :

par(mfrow = c(1, 3))
plot(pred_dc_2a, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Box-Jenkins")
abline(a = 0, b = 1)
text(pred_dc_2a, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"], 
     my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dep"], pos = 2)
plot(pred_dc_2b, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Lissage exponentiel journalier")
abline(a = 0, b = 1)
text(pred_dc_2b, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"], 
     my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dep"], pos = 2)
plot(pred_dc_2c, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"],
     xlab = "valeurs prédites", ylab = "valeurs observées", main = "Lissage exponentiel hebdomadaire")
abline(a = 0, b = 1)
text(pred_dc_2c, my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"], 
     my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dep"], pos = 2)

L’écart quadratique moyen est égal ici à :

c(
  mean((pred_dc_2a - my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"]) ^ 2, na.rm = T),
  mean((pred_dc_2b - my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"]) ^ 2, na.rm = T),
  mean((pred_dc_2c - my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"]) ^ 2, na.rm = T)
)
## [1] 46.83928 41.00990 30.07921

Les 3 prédictions sont très proches et on va choisir un algorithme de type stepwise sur les prédictions pour choisir la meilleure combinaison et ne garder qu’une prédiction de type série temporelle:

lm_2_dc_ts <- step(lm(my_basis[my_basis$semaine == "semaine_t00", "dc"] ~ 
                         pred_dc_2a + pred_dc_2b + pred_dc_2c - 1))
## Start:  AIC=344.82
## my_basis[my_basis$semaine == "semaine_t00", "dc"] ~ pred_dc_2a + 
##     pred_dc_2b + pred_dc_2c - 1
## 
##              Df Sum of Sq    RSS    AIC
## - pred_dc_2a  1     28.53 2920.6 343.81
## <none>                    2892.1 344.82
## - pred_dc_2b  1    111.85 3003.9 346.65
## - pred_dc_2c  1    735.90 3628.0 365.71
## 
## Step:  AIC=343.81
## my_basis[my_basis$semaine == "semaine_t00", "dc"] ~ pred_dc_2b + 
##     pred_dc_2c - 1
## 
##              Df Sum of Sq    RSS    AIC
## <none>                    2920.6 343.81
## - pred_dc_2b  1     84.35 3005.0 344.68
## - pred_dc_2c  1    835.28 3755.9 367.21
pred_dc_2 <- predict(lm_2_dc_ts)
mean((pred_dc_2 - na.omit(my_basis[my_basis$semaine == "semaine_t00", "dc"])) ^ 2)
## [1] 28.91702

7.3 Combinaison des prédictions

Combinaison des prédictions: on peut envisager de faire un panaché des deux prédictions en régressant (avec un algorithme de type stepwise) le nombre de décés observé la semaine t0 en fonction des deux méthodes de régression. On obtient l’écart moyen quadratique suivant :

lm_dc_3 <- lm(my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"] ~ 
                 pred_dc_1 + pred_dc_2 - 1)
mean((predict(lm_dc_3) - na.omit(my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"])) ^ 2)
## [1] 23.62144

On adapte le poids des prédictions en fonction de la semaine à prédire

semaine_to_drop <- c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")
pred_dc_1_s2 <- pred_dc_1
pred_dc_2a_s2 <- pred_dc_2a
pred_dc_2b_s2 <- pred_dc_2b
pred_dc_2c_s2 <- pred_dc_2c

y_true <- my_basis[my_basis$semaine == "semaine_t00", "dc"]

for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "dc"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 1))
  res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% semaine_to_drop), ])
  pred_dc_1_s2 <- c(pred_dc_1_s2, 
     round(predict(res_lm_dc_1, newdata = my_basis_dc[my_basis_dc$semaine == semaine_to_estim, ])))
  pred_dc_2a_temp <- numeric(length(nom_dep))
  pred_dc_2b_temp <- numeric(length(nom_dep))
  pred_dc_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
    temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & 
                     hospital$dep == nom_dep[k], ]
    my_ts <- zoo(temp$incid_dc, temp$jour)
    my_ts_diff <- diff(my_ts)
    # tseries::adf.test(my_ts) 
    # tseries::adf.test(my_ts_diff)
    if (nom_dep[k] %in% c("975", "977", "978")) {
      pred_dc_2[k] <- NA
    } else {
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod, h = 14)$mean)
      temp <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
      pred_dc_2a_temp[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp
      # modèles exponentiels
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 14)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      temp <- round(sum(forecast_my_mod_exp[1:7]), 0)
      pred_dc_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
      my_ts_exp <- zoo(temp$dc, temp$jour)
      if (all(my_ts_exp == 0)) {
        pred_dc_2c_temp[k] <- 0
      } else {
        my_mod_exp_2 <- ets(my_ts_exp)
        forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
        forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
        pred_dc_2c_temp[k] <- round(forecast_my_mod_exp[2], 0)
      }
    }
    
  }
   pred_dc_2a_s2 <- c(pred_dc_2a_s2, pred_dc_2a_temp)
   pred_dc_2b_s2 <- c(pred_dc_2b_s2, pred_dc_2b_temp)
   pred_dc_2c_s2 <- c(pred_dc_2c_s2, pred_dc_2c_temp)
}


lm_2_dc_ts_s1 <- step(lm(y_true ~ pred_dc_2a_s2 + pred_dc_2b_s2 + pred_dc_2c_s2 - 1))
## Start:  AIC=727.48
## y_true ~ pred_dc_2a_s2 + pred_dc_2b_s2 + pred_dc_2c_s2 - 1
## 
##                 Df Sum of Sq    RSS    AIC
## - pred_dc_2a_s2  1     41.10 7227.7 726.64
## <none>                       7186.6 727.48
## - pred_dc_2b_s2  1    275.67 7462.3 733.09
## - pred_dc_2c_s2  1   1983.15 9169.8 774.71
## 
## Step:  AIC=726.64
## y_true ~ pred_dc_2b_s2 + pred_dc_2c_s2 - 1
## 
##                 Df Sum of Sq     RSS    AIC
## <none>                        7227.7 726.64
## - pred_dc_2b_s2  1    239.52  7467.2 731.22
## - pred_dc_2c_s2  1   2902.15 10129.9 792.82
pred_dc_2_s2 <- predict(lm_2_dc_ts_s1)

lm_dc_3b <- lm(y_true ~ pred_dc_1_s2 + pred_dc_2_s2 - 1)

#######
# Semaine + 2
#######

semaine_to_drop <- c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00", "semaine_t01")
pred_dc_1_s3 <- pred_dc_1_s2
pred_dc_2a_s3 <- pred_dc_2a_s2
pred_dc_2b_s3 <- pred_dc_2b_s2
pred_dc_2c_s3 <- pred_dc_2c_s2


for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "dc"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 2))
  
  res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% semaine_to_drop), ])
  pred_dc_1_s3 <- c(pred_dc_1_s3, round(predict(res_lm_dc_1, 
                      newdata = my_basis_dc[my_basis_dc$semaine == semaine_to_estim, ])))
  
  pred_dc_2a_temp <- numeric(length(nom_dep))
  pred_dc_2b_temp <- numeric(length(nom_dep))
  pred_dc_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
     temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & hospital$dep == nom_dep[k], ]
     my_ts <- zoo(temp$incid_dc, temp$jour)
     my_ts_diff <- diff(my_ts)
     # tseries::adf.test(my_ts) 
     # tseries::adf.test(my_ts_diff)
     if (nom_dep[k] %in% c("975", "977", "978")) {
       pred_dc_2[k] <- NA
     } else {
       my_mod <- forecast::auto.arima(my_ts_diff)
       forecast_my_mod <- as.numeric(forecast(my_mod, h = 21)$mean)
       temp1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
       temp2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp1
       temp3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - temp1 - temp2
       pred_dc_2a_temp[k] <- ifelse(temp3 > 0, round(temp3), 0)
       # modèles exponentiels
       # Méthode 2 : lissage exponentiel
       my_mod_exp <- ets(my_ts)
       forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 21)$mean)
       forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
       temp1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
       temp2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp1
       pred_dc_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:21]), 0) - temp2 - temp1
       # Méthode 3 : lissage exponentiel sur données hebdomadaires
       temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
       my_ts_exp <- zoo(temp$dc, temp$jour)
       if (all(my_ts_exp == 0)) {
         pred_dc_2c_temp[k] <- 0
       } else {
         my_mod_exp_2 <- ets(my_ts_exp)
         forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
         forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
         pred_dc_2c_temp[k] <- round(forecast_my_mod_exp[3], 0)
       }
    }
}

  pred_dc_2a_s3 <- c(pred_dc_2a_s3, pred_dc_2a_temp)
  pred_dc_2b_s3 <- c(pred_dc_2b_s3, pred_dc_2b_temp)
  pred_dc_2c_s3 <- c(pred_dc_2c_s3, pred_dc_2c_temp)
}

lm_2_dc_ts_s2 <- step(lm(y_true ~ pred_dc_2a_s3 + pred_dc_2b_s3 + pred_dc_2c_s3 - 1))
## Start:  AIC=1150.07
## y_true ~ pred_dc_2a_s3 + pred_dc_2b_s3 + pred_dc_2c_s3 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2b_s3  1      1.93 13223 1148.1
## - pred_dc_2a_s3  1      5.18 13226 1148.2
## <none>                       13221 1150.1
## - pred_dc_2c_s3  1   2517.48 15738 1200.9
## 
## Step:  AIC=1148.11
## y_true ~ pred_dc_2a_s3 + pred_dc_2c_s3 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2a_s3  1      3.28 13226 1146.2
## <none>                       13223 1148.1
## - pred_dc_2c_s3  1   2614.91 15838 1200.8
## 
## Step:  AIC=1146.19
## y_true ~ pred_dc_2c_s3 - 1
## 
##                 Df Sum of Sq    RSS    AIC
## <none>                        13226 1146.2
## - pred_dc_2c_s3  1    205075 218301 1993.7
pred_dc_2_s3 <- predict(lm_2_dc_ts_s2)

lm_dc_3c <- lm(y_true ~ pred_dc_1_s3 + pred_dc_2_s3 - 1)

#######
# Semaine T + 3
#######

semaine_to_drop <- c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", 
                     "semaine_t00", "semaine_t01", "semaine_t02")
pred_dc_1_s4 <- pred_dc_1_s3
pred_dc_2a_s4 <- pred_dc_2a_s3
pred_dc_2b_s4 <- pred_dc_2b_s3
pred_dc_2c_s4 <- pred_dc_2c_s3


for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "dc"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 3))
  
  res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% semaine_to_drop), ])
  pred_dc_1_s4 <- c(pred_dc_1_s4, round(predict(res_lm_dc_1, 
                      newdata = my_basis_dc[my_basis_dc$semaine == semaine_to_estim, ])))
  
  pred_dc_2a_temp <- numeric(length(nom_dep))
  pred_dc_2b_temp <- numeric(length(nom_dep))
  pred_dc_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
     temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & hospital$dep == nom_dep[k], ]
     my_ts <- zoo(temp$incid_dc, temp$jour)
     my_ts_diff <- diff(my_ts)
     # tseries::adf.test(my_ts) 
     # tseries::adf.test(my_ts_diff)
     if (nom_dep[k] %in% c("975", "977", "978")) {
       pred_dc_2[k] <- NA
     } else {
       my_mod <- forecast::auto.arima(my_ts_diff)
       forecast_my_mod <- as.numeric(forecast(my_mod, h = 28)$mean)
       temp1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
       temp2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp1
       temp3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - temp1 - temp2 
       temp4 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:28]) - temp1 - temp2 - temp3
       pred_dc_2a_temp[k] <- ifelse(temp4 > 0, round(temp4), 0)
       # modèles exponentiels
       # Méthode 2 : lissage exponentiel
       my_mod_exp <- ets(my_ts)
       forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 28)$mean)
       forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
       temp1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
       temp2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp1
       temp3 <- round(sum(forecast_my_mod_exp[1:21]), 0) - temp1 - temp2
       pred_dc_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:28]), 0) - temp1 - temp2 - temp3
       # Méthode 3 : lissage exponentiel sur données hebdomadaires
       temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
       my_ts_exp <- zoo(temp$dc, temp$jour)
       if (all(my_ts_exp == 0)) {
         pred_dc_2c_temp[k] <- 0
       } else {
         my_mod_exp_2 <- ets(my_ts_exp)
         forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
         forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
         pred_dc_2c_temp[k] <- round(forecast_my_mod_exp[4], 0)
       }
    }
}

  pred_dc_2a_s4 <- c(pred_dc_2a_s4, pred_dc_2a_temp)
  pred_dc_2b_s4 <- c(pred_dc_2b_s4, pred_dc_2b_temp)
  pred_dc_2c_s4 <- c(pred_dc_2c_s4, pred_dc_2c_temp)
}

lm_2_dc_ts_s3 <- step(lm(y_true ~ pred_dc_2a_s4 + pred_dc_2b_s4 + pred_dc_2c_s4 - 1))
## Start:  AIC=1600.13
## y_true ~ pred_dc_2a_s4 + pred_dc_2b_s4 + pred_dc_2c_s4 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2a_s4  1      1.06 20896 1598.2
## - pred_dc_2b_s4  1     17.91 20913 1598.5
## <none>                       20895 1600.1
## - pred_dc_2c_s4  1   3090.60 23986 1653.9
## 
## Step:  AIC=1598.15
## y_true ~ pred_dc_2b_s4 + pred_dc_2c_s4 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2b_s4  1      22.1 20918 1596.6
## <none>                       20896 1598.2
## - pred_dc_2c_s4  1    4952.6 25849 1682.1
## 
## Step:  AIC=1596.57
## y_true ~ pred_dc_2c_s4 - 1
## 
##                 Df Sum of Sq    RSS    AIC
## <none>                        20918 1596.6
## - pred_dc_2c_s4  1    270150 291068 2658.3
pred_dc_2_s4 <- predict(lm_2_dc_ts_s3)

lm_dc_4c <- lm(y_true ~ pred_dc_1_s4 + pred_dc_2_s4 - 1)

7.4 Prédiction

On prédit:

  • le nombre de décès à venir du [27 mars 2021; 02 avril 2021] en utilisant les nouvelles réanimations du [20 mars 2021; 26 mars 2021]

  • le nombre de décès à venir du [03 avril 2021; 09 avril 2021] en utilisant la prédiction des réanimations à venir du [27 mars 2021; 02 avril 2021]

  • le nombre de décès à venir du [10 avril 2021; 16 avril 2021] en utilisant la prédiction des réanimations à venir du [03 avril 2021; 09 avril 2021]

  • le nombre de décès à venir du [17 avril 2021; 23 avril 2021] en utilisant la prédiction des réanimations à venir du [03 avril 2021; 09 avril 2021]

Pour cela, on actualise le modèle, c’est-à-dire qu’on inclut la dernière semaine observée:

res_lm <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% c("semaine_t0-2", "semaine_t0-1")), ])

# semaine t+1
new_data_dc_1 <- my_basis_dc[my_basis_dc$semaine %in% c("semaine_t0-1", "semaine_t0-2", "semaine_t0-3", "semaine_t0-4"),  ]
pred_dc_1 <- predict(res_lm, newdata = new_data_dc_1)

pred_dc_2 <- matrix(0, length(nom_dep), 4)
pred_dc_2a <- matrix(0, length(nom_dep), 4)
pred_dc_2b <- matrix(0, length(nom_dep), 4)
pred_dc_2c <- matrix(0, length(nom_dep), 4)
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_dc, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_rea_2[k] <- NA
  } else {
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod, h = 28)$mean)
    pred_3a_s1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    pred_3a_s2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - pred_3a_s1
    pred_3a_s3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - 
      pred_3a_s1 - pred_3a_s2
    pred_3a_s4 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:28]) - 
      pred_3a_s1 - pred_3a_s2 - pred_3a_s3
        # Lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 28)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b_s1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
    pred_3b_s2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - pred_3b_s1
    pred_3b_s3 <- round(sum(forecast_my_mod_exp[1:21]), 0) - pred_3b_s2 - pred_3b_s1
    pred_3b_s4 <- round(sum(forecast_my_mod_exp[1:28]), 0) - pred_3b_s3 - pred_3b_s2 - pred_3b_s1
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1")), ]
    my_ts_exp <- zoo(temp$dc, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c_s1 <- round(forecast_my_mod_exp[1], 0)
    pred_3c_s2 <- round(forecast_my_mod_exp[2], 0)
    pred_3c_s3 <- round(forecast_my_mod_exp[3], 0)    
    pred_3c_s4 <- round(forecast_my_mod_exp[4], 0) 
      
    pred_dc_2[k, 1] <- predict(lm_2_dc_ts, newdata = data.frame(pred_dc_2a = pred_3a_s1,
                                                 pred_dc_2b = pred_3b_s1,
                                                 pred_dc_2c = pred_3c_s1))
    pred_dc_2[k, 2] <- predict(lm_2_dc_ts_s1, newdata = data.frame(pred_dc_2a_s2 = pred_3a_s2,
                                                 pred_dc_2b_s2 = pred_3b_s2,
                                                 pred_dc_2c_s2 = pred_3c_s2))
    pred_dc_2[k, 3] <- predict(lm_2_dc_ts_s2, newdata = data.frame(pred_dc_2a_s3 = pred_3a_s3,
                                                 pred_dc_2b_s3 = pred_3b_s3,
                                                 pred_dc_2c_s3 = pred_3c_s3))
    pred_dc_2[k, 4] <- predict(lm_2_dc_ts_s3, newdata = data.frame(pred_dc_2a_s4 = pred_3a_s4,
                                                 pred_dc_2b_s4 = pred_3b_s4,
                                                 pred_dc_2c_s4 = pred_3c_s4))  
  }
}

n_4 <- 4 * length(nom_dep) 

pred_dc_a <- predict(lm_dc_3, newdata = data.frame(pred_dc_1 = 
                        pred_dc_1[new_data_dc_1$semaine == "semaine_t0-1"],
                        pred_dc_2 = as.vector(pred_dc_2)[1:(n_4 / 4)]))

pred_dc_b <- predict(lm_dc_3b, newdata = data.frame(
  pred_dc_1_s2 = pred_dc_1[new_data_dc_1$semaine == "semaine_t0-2"],
  pred_dc_2_s2 = as.vector(pred_dc_2)[((n_4 / 4) + 1):(2 * n_4 / 4)]))

pred_dc_c <- predict(lm_dc_3c, newdata = data.frame(
  pred_dc_1_s3 = pred_dc_1[new_data_dc_1$semaine == "semaine_t0-3"],
  pred_dc_2_s3 = as.vector(pred_dc_2)[(2 * n_4 / 4 + 1):(3 * n_4 / 4)]))

pred_dc_d <- predict(lm_dc_4c, newdata = data.frame(
  pred_dc_1_s4 = pred_dc_1[new_data_dc_1$semaine == "semaine_t0-4"],
  pred_dc_2_s4 = as.vector(pred_dc_2)[(3 * n_4 / 4 + 1):n_4]))



# on synthétise les résultats
new_data <- my_basis[my_basis$semaine %in% "semaine_t0-1", ]
new_data$this_week <- my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"]
new_data$next_week <- pred_dc_a
new_data$next_two_week <- pred_dc_b
new_data$next_three_week <- pred_dc_c
new_data$next_four_week <- pred_dc_d
my_basis[my_basis$semaine %in% "semaine_t0-1", "dc"] <- pred_dc_a
my_basis[my_basis$semaine %in% "semaine_t0-2", "dc"] <- pred_dc_b
my_basis[my_basis$semaine %in% "semaine_t0-3", "dc"] <- pred_dc_c
my_basis[my_basis$semaine %in% "semaine_t0-4", "dc"] <- pred_dc_d

On va représenter l’évolution du nombre de décès dans un intervalle de temps de 5 semaines :

  • les 7 derniers jours passés : [20 mars 2021; 26 mars 2021]
  • la semaine à venir : [27 mars 2021; 02 avril 2021]
  • la 2ème semaine à venir : [03 avril 2021; 09 avril 2021]
  • la 3ème semaine à venir : [10 avril 2021; 16 avril 2021]
  • la 4ème semaine à venir : [10 avril 2021; 16 avril 2021]
new_data_long <- tidyr::pivot_longer(data = select(new_data, dep, region, 
                                    this_week, next_week, next_two_week, next_three_week, next_four_week),
                                   col = 3:7,
                                   names_to = "semaine",
                                   values_to = "dc")
new_data_long$semaine <- factor(new_data_long$semaine,
      levels = c("this_week", "next_week", "next_two_week", "next_three_week", "next_four_week"),
      labels = c(paste0("[", format(to_day - 7, '%d %b'), "; ",  
                        format(to_day - 1, '%d %b'), "]"),
                 paste0("[", format(to_day, '%d %b'), "; ",  
                        format(to_day + 6, '%d %b'), "]"),
                 paste0("[", format(to_day + 7, '%d %b'), "; ",  
                        format(to_day + 13, '%d %b'), "]"),
                 paste0("[", format(to_day + 14, '%d %b'), "; ",  
                        format(to_day + 20, '%d %b'), "]"), 
                 paste0("[", format(to_day + 21, '%d %b'), "; ",  
                        format(to_day + 27, '%d %b'), "]")
                 )
      )

new_data_long$region <- factor(new_data_long$region, levels = hosp_region$region)
p <- ggplot(new_data_long, aes(x = semaine, y = dc,  group = dep))+
    geom_line() +
  facet_wrap(~region)
plotly::ggplotly(p)

On aggrège les données à la France entière:

my_basis_fr <- my_basis %>%
  group_by(semaine, jour) %>%
  summarise(dc = sum(dc))
p <- ggplot(data = filter(my_basis_fr, semaine %in% 
                      c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")),
            aes(x = jour, y = dc)) +
  geom_line(col = "red") +
  geom_line(data = filter(my_basis_fr, !(semaine %in% 
                        c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1"))), 
            aes(x = jour, y = dc)) +
  labs(title = "Prédiction des nouveaux décès dans les 28 jours",
       x = "semaine",
       y = "décès",
       fill = "Age") 
plotly::ggplotly(p)

Soit un nombre de décès par jour de :

new_data_long %>%
  group_by(semaine) %>%
  summarize(dc = sum(dc, na.rm = T) / 7)
## # A tibble: 5 x 2
##   semaine                 dc
##   <fct>                <dbl>
## 1 [20 mars; 26 mars]    248.
## 2 [27 mars; 02 avril]   253.
## 3 [03 avril; 09 avril]  257.
## 4 [10 avril; 16 avril]  266.
## 5 [17 avril; 23 avril]  291.