Ce document a été généré avec l’outil R Markdown. Le code R et les données qui ont été utilisées sont ainsi mis à disposition et permettent donc la reproductibilité des résultats obtenus.

Par ailleurs, le document est mis à jour automatiquement chaque jour. Pour consulter les archives, cliquer ici.

Source de données utilisées:

Questions de recherche:

En fonction des réponses aux questions précédentes :

Packages et fonctions locales à charger:

library(cartogram)
library(cartography)
library(forecast)
library(kableExtra)
library(rgdal)
library(tidyverse)
library(vistime)
library(zoo)
source("fonctions.R")

Version de R utilisée:

R.version
##                _                           
## platform       x86_64-pc-linux-gnu         
## arch           x86_64                      
## os             linux-gnu                   
## system         x86_64, linux-gnu           
## status                                     
## major          4                           
## minor          0.3                         
## year           2020                        
## month          10                          
## day            10                          
## svn rev        79318                       
## language       R                           
## version.string R version 4.0.3 (2020-10-10)
## nickname       Bunny-Wunnies Freak Out

1 Données hospitalières relatives à l’épidémie de COVID-19

1.1 Présentation des données

1.1.1 Données par département

Dans un premier temps, on met à jour les données tous les jours de façon automatique.

Comment se présente les données du Ministère de la Santé ?

dep jour incid_hosp incid_rea incid_dc incid_rad nom_dep region
18717 69 2020-12-12 30 5 12 35 Rhône Auvergne-Rhône-Alpes
18763 69 2020-12-11 33 7 11 49 Rhône Auvergne-Rhône-Alpes
18765 69 2020-12-13 19 5 15 7 Rhône Auvergne-Rhône-Alpes
18783 69 2020-12-10 71 12 23 91 Rhône Auvergne-Rhône-Alpes

Ici il s’agit des données qui donnent chaque jour par département :

  • le nombre de nouvelles entrées en hospitalisations
  • le nombre de nouvelles entrées en réanimations
  • le nombre de décés
  • le nombre de sorties

On créé des fenêtres de 7 jour à partir du dernier jour observé. Par exemple si nous avons les données d’hospitalisation jusqu’au 13 décembre 2020 la semaine qui correspond à la semaine t0 correspond à la fenêtre [07 décembre 2020; 13 décembre 2020]. Dans chaque fenêtre, on calcule le nombre de nouvelles hospitalisations, réanimations et décès par département.

1.1.2 Données par région

On dispose égaglement des données d’hospitalisations/réanimations/décès par classe d’âge à la différence qu’il s’agit de données régionales et qu’il s’agit des données de stock (nombre d’hospitalisations et réanimations en cours) et pas du nombre de nouvelles hospitalisations. On peut toutefois estimer le nombre de nouvelles hospitalisations ou décès en faisant les différences des valeurs d’un jour sur l’autre.

my_url <- "https://www.data.gouv.fr/fr/datasets/r/08c18e08-6780-452d-9b8c-ae244ad529b3"
if (!file.exists(paste0(getwd(), "/data/age", to_day, ".csv"))) {
  download.file(my_url, destfile = paste0(getwd(), "/data/age", to_day, ".csv"))
}
hospital_age <- read.csv(paste0(getwd(), "/data/age", to_day, ".csv"), sep = ";")
# On ajoute le nom des régions:
hospital_age <- merge(hospital_age, code_region, by.x = "reg", by.y = "code")
# On utilise le format date pour coder le jour:
hospital_age$jour <- as.Date(hospital_age$jour)
# on affecte la semaine
hospital_age$semaine <- num_semaine(hospital_age$jour)

# on calcule les nouvelles hospitalisations/réanimations/décès
hospital_age$new_hosp <- 0
hospital_age$new_rea <- 0
hospital_age$new_dc <- 0

for (k in nrow(hospital_age):1) {
  age_k <- hospital_age$cl_age90[k] 
  jour_k <- hospital_age$jour[k] 
  reg_k <- hospital_age$reg[k] 
  rad_k <- hospital_age$rad[k] 
  dc_k <- hospital_age$dc[k] 
  
  ind_k <- which(hospital_age$reg == reg_k & hospital_age$cl_age90 == age_k & hospital_age$jour == jour_k - 1)
  if (length(ind_k) == 1) {
    hospital_age$new_hosp[k] <- max((hospital_age$hosp[k] - hospital_age$hosp[ind_k]) + 
                                (hospital_age$dc[k] - hospital_age$dc[ind_k]) +     
                              (hospital_age$rad[k] - hospital_age$rad[ind_k]) +
                              (hospital_age$rea[k] - hospital_age$rea[ind_k]), 0)
    hospital_age$new_rea[k] <- max((hospital_age$dc[k] - hospital_age$dc[ind_k]) +     
                              (hospital_age$rea[k] - hospital_age$rea[ind_k]), 0) 
    hospital_age$new_dc[k] <- max((hospital_age$dc[k] - hospital_age$dc[ind_k]), 0) 
  }
}
# on aggrege par semaine
my_basis_age <- hospital_age %>%
  group_by(region, semaine, cl_age90) %>%
  dplyr::summarize(hosp = sum(new_hosp),
                   rea = sum(new_rea),
                   dc = sum(new_dc),
            jour = max(jour),
            region = unique(region))
# On met au format wide
my_basis_age_wide <- tidyr::pivot_wider(my_basis_age,
                           id_cols = c("semaine", "region", "jour", "hosp", "rea", "dc", "cl_age90"),
                           names_from = "cl_age90",
                           values_from = c("hosp", "rea", "dc"))

1.2 Quelle est la situation cette semaine ?

On va calculer quelques chiffres clés pour mesure la situation des régions sur les 7 derniers jours qui viennent de s’écouler : [07 décembre 2020; 13 décembre 2020].

1.2.1 Résumé des hospitalisations

On représente par région:

  • le nombre total de nouvelles hospitalisations (semaine [07 décembre 2020; 13 décembre 2020]).

  • le nombre moyen journalier de nouvelles hospitalisations (semaine [07 décembre 2020; 13 décembre 2020]).

  • l’évolution (en pourcentage) entre la semaine [30 novembre 2020; 06 décembre 2020] et la semaine [07 décembre 2020; 13 décembre 2020].

region total semaine moyenne jour evolution en %
Ile-de-France 1538 220 17.9
Auvergne-Rhône-Alpes 1332 190 -17
Grand Est 1104 158 6.9
Hauts-de-France 848 121 3.3
Bourgogne-Franche-Comté 789 113 7.9
Provence-Alpes-Côte d’Azur 786 112 -14.7
Nouvelle-Aquitaine 606 87 21.9
Occitanie 398 57 -14.6
Pays de la Loire 377 54 14.2
Centre-Val de Loire 372 53 9.4
Normandie 337 48 11.2
Bretagne 188 27 14.6
DOM-TOM 57 8 0
Corse 2 0 -66.7
France entière 8734 1248 1.8

On représente par département la carte des nouvelles hospitalisations sur la dernière semaine observée ([07 décembre 2020; 13 décembre 2020])

## OGR data source with driver: ESRI Shapefile 
## Source: "/media/thibault/My Passport/confinement/covid/departements 2015/DEPARTEMENT", layer: "DEPARTEMENT"
## with 96 features
## It has 11 fields

1.2.2 Résumé des réanimations

On représente par région:

  • le nombre total de nouvelles réanimations (semaine [07 décembre 2020; 13 décembre 2020]).

  • le nombre moyen journalier de nouvelles réanimations (semaine [07 décembre 2020; 13 décembre 2020]).

  • l’évolution (en pourcentage) entre la semaine [30 novembre 2020; 06 décembre 2020] et la semaine [07 décembre 2020; 13 décembre 2020].

region total semaine moyenne jour evolution en %
Ile-de-France 271 39 21.5
Auvergne-Rhône-Alpes 211 30 -0.5
Grand Est 131 19 32.3
Hauts-de-France 127 18 4.1
Provence-Alpes-Côte d’Azur 114 16 -24.5
Bourgogne-Franche-Comté 86 12 -1.1
Occitanie 64 9 -12.3
Nouvelle-Aquitaine 58 8 -18.3
Centre-Val de Loire 43 6 38.7
Normandie 29 4 -29.3
Pays de la Loire 26 4 8.3
Bretagne 9 1 -59.1
DOM-TOM 5 1 -28.6
Corse 0 0 -100
France entière 1174 168 0.7

On représente par département la carte des nouvelles réanimations sur la dernière semaine observée ([07 décembre 2020; 13 décembre 2020])

1.2.3 Résumé des décès

On représente par région:

  • le nombre total de nouveaux décès (semaine [07 décembre 2020; 13 décembre 2020]).

  • le nombre moyen journalier de nouveaux décès (semaine [07 décembre 2020; 13 décembre 2020]).

  • l’évolution (en pourcentage) entre la semaine [30 novembre 2020; 06 décembre 2020] et la semaine [07 décembre 2020; 13 décembre 2020].

region total semaine moyenne jour evolution en %
Auvergne-Rhône-Alpes 372 53 -17.7
Ile-de-France 323 46 5.6
Grand Est 266 38 8.1
Hauts-de-France 209 30 0.5
Bourgogne-Franche-Comté 178 25 23.6
Provence-Alpes-Côte d’Azur 159 23 -17.2
Nouvelle-Aquitaine 126 18 -0.8
Occitanie 98 14 -21.6
Pays de la Loire 83 12 23.9
Centre-Val de Loire 75 11 4.2
Normandie 74 11 -28.2
Bretagne 25 4 -32.4
DOM-TOM 5 1 0
Corse 1 0 -50
France entière 1994 285 -4.4

On représente par département la carte des nouveaux décès sur la dernière semaine observée ([07 décembre 2020; 13 décembre 2020])

1.3 Comment a évolué la situation depuis le début de l’épidémie ?

1.3.1 Graphique d’évolution

1.3.1.1 Hospitalisations

Ici, on représente le nombre d’entrée en hospitalisations par semaine en fonction du temps sur la France entière.

On représente la même figure mais en mettant en relief la répartition des valeurs par région :

On représente la même figure mais en mettant en relief la répartition des valeurs par classe d’âge :

On met les valeurs en pourcentages pour que le graphique soit plus visible

1.3.1.2 Réanimations

On représente le nombre cummulé d’entrée en réanimations par semaine en fonction du temps sur la France entière.

On représente la même figure mais en mettant en relief la répartition des valeurs par région :

On représente la même figure mais en mettant en relief la répartition des valeurs par classe d’âge :

On met les valeurs en pourcentages pour que le graphique soit plus visibles

Enfin, on représente le ratio réanimations / hospitalisations :

1.3.1.3 Décès

On représente le nombre cummulé de nouveaux décès par semaine en fonction du temps sur la France entière.

On représente la même figure mais en mettant en relief la répartition des valeurs par région :

On représente la même figure mais en mettant en relief la répartition des valeurs par classe d’âge :

On met les valeurs en pourcentages pour que le graphique soit plus visibles

Enfin, on représente le ratio décès / réanimations :

1.3.2 Graphique d’évolution du nombre d’hospitalisations par départements groupés par région

On va s’intéresser au nombre d’hospitalisations. On peut représenter cette information département par département. Ici, on représente le nombre cummulé d’entrée par semaine en fonction du temps.

On représente d’abord les 4 régions actuellement les plus touchées et pour lesquelles l’axe des ordonnées va de 0 à 1200.

On représente ensuite les 8 régions suivantes les plus touchées mais avec une échelle différente sur l’axe des ordonnées (0 à 400):

Enfin, on représente les 2 régions les moins touchées et avec une échelle différente sur l’axe des ordonnées (0 à 200):

1.3.3 Cartes d’évolution sur les 6 dernières semaines

On représente l’évolution des hospitalisations sur les 6 dernières semaines:

On représente l’évolution des réanimations sur les 6 dernières semaines:

On représente l’évolution des décès sur les 6 dernières semaines:

1.4 Départements avec les plus fortes évolutions en valeurs absolues par rapport à la semaine précédente

On calcule la différence entre le nombre de nouveaux patients hospitalisés sur la période [07 décembre 2020; 13 décembre 2020] et sur la période [29 novembre 2020; 06 décembre 2020]

On va représenter des couleurs différentes en fonction du taux d’évolution découpées en 5 classes

  • taux d’évolution négatif
  • taux compris entre 0 et \(50\%\)
  • taux compris entre \(50\%\) et \(100\%\)
  • taux compris entre \(100\%\) et \(200\%\)
  • taux supérieur à \(200\%\)

2 Données relatives aux résultats des tests virologiques COVID-19

On met à jour les données chaque jour :

On va calculer quelques chiffres clés pour mesurer la situation des régions sur une fenêtre de 7 jours [04 décembre 2020; 10 décembre 2020]. On ne peut pas représenter les 7 derniers jours car les données ne sont pas encore diffusées.

On représente par région:

region total semaine moyenne jour evolution en %
Ile-de-France 13713 1959 7.7
Auvergne-Rhône-Alpes 13149 1878 0.5
Grand Est 9431 1347 24.8
Hauts-de-France 7184 1026 3.8
Provence-Alpes-Côte d’Azur 6475 925 0.4
Bourgogne-Franche-Comté 5574 796 13.7
Nouvelle-Aquitaine 5101 729 3.4
Occitanie 4516 645 -5
Pays de la Loire 3094 442 10.9
Normandie 2895 414 20.3
Centre-Val de Loire 2885 412 7.7
Bretagne 1424 203 3.3
DOM-TOM 828 118 5.2
Corse 86 12 -19.6
France entière 76355 10908 6.8

2.1 Représentation des testés positifs par tranche d’âge en fonction du temps

On représente les testés positifs par tranche d’age:

On représente les testés positifs par région :

2.2 Graphique d’évolution du nombre de détectés positifs par départements groupés par région

2.3 Choix du décallage

Hypothèse: on suppose que le nombre d’admis en hospitalisations à la semaine t0 dépend du nombre de cas testés positifs sur une fenêtre de 7 jours qui aura commencé 10 jours avant la semaine t0. Exemple: la semaine t0 est [07 décembre 2020; 13 décembre 2020], on va l’expliquer par le nombre de personnes testées positive du [27 novembre 2020; 03 décembre 2020].

3 Préparation des données pour la modélisation

On prépare ici les données pour l’étape de modélisation:

3.1 Représentation du lien entre entre le nombre d’hospitalisations et le nombre de testés positifs

Dans un premier temps, on va rerésenter les départements par des cercles de taille proportionnelle aux nombres de testés positifs la semaine du [27 novembre 2020; 03 décembre 2020]. La couleur dépend du nombre d’hospitalisations observés la semaine du [07 décembre 2020; 13 décembre 2020].

On représente le nombre de nouvelles hospitalisations par semaine et par département en fonction du nombre de personnes testées positives quelques jours auparavant et on constate un lien très fort.

4 Prédire le nombre de testés positifs

On rappelle que les données sur le nombre de testés positifs ne sont disponible que jusqu’au 10 décembre 2020. Notre objectif est de prédire le nombre de testés positifs du 11 décembre 2020 au 17 décembre 2020 en utilisant des modèles de séries temporelles. En utilisant un modèle de série temporelle on suppose que ce qu’on observe à la date \(j\) dépend de ce qu’il s’est passé les dates antérieures. On va utiliser 3 modèles différents et en fonction de leur performence (sur les données passées), on va leur donner plus ou moins d’importance.

4.1 Modèle de type Box-Jenkins

Ici, on considère les données journalières, et non hebdomadaires. On va expliquer \(y_{d, t}^a\), le nombre de testés positifs le jour \(t\) dans le département \(d\) et dans la tranche d’âge \(a\). La stratégie utilisée est la suivante :

  • on différencie chaque série pour les rendre stationnaire (on ne vérifiera pas l’hypothèse de stationarité après la différenciation car on modélise énormément de modèle, ici on a \(A\times D\) séries où \(A\) est le nombre de classe d’âge et \(D\) le nombre de département et notre but est d’avoir une procédure automatique)

  • on cherche le meilleur modèle \(ARIMA(p,d,q)\) selon le critère AIC, à l’aide de la fonction auto.arima() (package forecast)

  • on prédit sur les 7 prochains jours à venir et on cummule ces prédictions pour avoir une prédiction du nombre de cas positifs sur la semaine à venir.

4.2 Modèle de type Lissage exponentiel

On va appliquer deux modèles de lissage exponentiels:

  • un modèle journalier qui va permettre de modéliser \(y_{d, t}^a\), le nombre de testés positifs le jour \(t\) dans le département \(d\) et dans la tranche d’âge \(a\) afin de prédire le nombre de testés positifs dans les 7 jours.

  • un modèle hebdomadaire qui va permettre de modéliser \(y_{d, s}^a\), le nombre de testés positifs la semaine \(s\) dans le département \(d\) et dans la tranche d’âge \(a\) afin de prédire le nombre de testés positifs la semaine à venir.

4.3 Combinaison des prédictions

On apprentit les modèles ci-dessus en enlevant la dernière semaine observée dans le but de donner des poids différents aux trois modèles de prédictions utilisés. Ainsi, on donnera davantage de poids aux modèles qui ont mieux prédit la dernière semaine observée.

# prediction par department 
nom_dep <- my_basis[my_basis$semaine == "semaine_t00", "dep"]
pred_cas <- numeric(length(nom_dep))
my_tab <- data.frame(true_P = numeric(0), pred_1 = numeric(0), pred_2 = numeric(0), pred_3 = numeric(0))
      
# apprentissage
for (k in length(nom_dep):1) {
  if (nom_dep[k] %in% c("975", "977", "978")) {
    my_basis <- rbind(data_k, my_basis)
  } else {
    for (age in c(0, 9, 19, 29, 39, 49, 59, 69, 79, 89, 90)) {
      
      # apprentissage
      temp <- test[test$dep == nom_dep[k] & test$cl_age90 == age & test$jour <= max(test$jour) - 7, ]
      my_ts <- zoo(temp$P, temp$jour)
      
      # Methode 1 : ARIMA
      my_ts_diff <- diff(my_ts)
      # tseries::adf.test(my_ts) 
      # tseries::adf.test(my_ts_diff)
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
      pred_1 <- round(sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7]), 0)
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_2 <- round(sum(forecast_my_mod_exp[1:7]), 0)
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% c("semaine_t0-1", "semaine_t0-2")), ]
      my_ts_exp <- zoo(temp[ , paste0("tranche_", age)], temp$jour)
      my_mod_exp_2 <- ets(my_ts_exp)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_3 <- round(forecast_my_mod_exp[1], 0)
      
      true_P <- sum(test[which(test$dep == nom_dep[k] & test$cl_age90 == age & 
                               test$jour > (max(test$jour) - 7)), "P"])
      my_tab <- rbind(my_tab, data.frame(true_P = true_P, pred_1 = pred_1, pred_2 = pred_2, pred_3 = pred_3))
    }
  }
}

res_lm_cas <- lm(true_P ~ pred_1 + pred_2 + pred_3, data = my_tab)

for (k in length(nom_dep):1) {
  data_k <- data.frame(dep = nom_dep[k], semaine = "semaine_t0-2", hosp = NA, rea = NA, rad = NA, dc = NA,
                         jour = to_day + 13, region = dep_region[match(nom_dep[k], dep_region$dep) , "region"],
                         tranche_9 = NA, tranche_19 = NA,  tranche_29 = NA,  tranche_39 = NA,  tranche_49 = NA, 
                         tranche_59 = NA,  tranche_69 = NA,  tranche_79 = NA,  tranche_89 = NA,  tranche_90 = NA, 
                         tranche_0  = NA)
  data_k_2 <- data.frame(dep = nom_dep[k], semaine = "semaine_t0-2", hosp = NA, rea = NA, rad = NA, dc = NA,
                         jour = to_day + 13, region = dep_region[match(nom_dep[k], dep_region$dep) , "region"],
                         tranche_9 = NA, tranche_19 = NA,  tranche_29 = NA,  tranche_39 = NA,  tranche_49 = NA, 
                         tranche_59 = NA,  tranche_69 = NA,  tranche_79 = NA,  tranche_89 = NA,  tranche_90 = NA, 
                         tranche_0  = NA)
      
  if (nom_dep[k] %in% c("975", "977", "978")) {
    my_basis <- rbind(data_k, my_basis)
  } else {
    for (age in c(0, 9, 19, 29, 39, 49, 59, 69, 79, 89, 90)) {
      # modèle journaliers 
      temp <- test[test$dep == nom_dep[k] & test$cl_age90 == age, ]
      my_ts <- zoo(temp$P, temp$jour)
      my_ts_diff <- diff(my_ts)
      # tseries::adf.test(my_ts) 
      # tseries::adf.test(my_ts_diff)
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod)$mean)
      pred_1 <- round(sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7]), 0)
      # modèles exponentiels
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_2 <- round(sum(forecast_my_mod_exp[1:7]), 0)
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% c("semaine_t0-2")), ]
      my_ts_exp <- zoo(temp[ , paste0("tranche_", age)], temp$jour)
      my_mod_exp_2 <- ets(my_ts_exp)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      pred_3 <- round(forecast_my_mod_exp[1], 0)
      data_k[ , paste0("tranche_", age)] <- predict(res_lm_cas, newdata = data.frame(pred_1 = pred_1,
                                                                                     pred_2 = pred_2,
                                                                                     pred_3 = pred_3))
    }
    my_basis <- rbind(data_k, my_basis)
  }
}

On représente les testés positifs par région en ajoutant les valeurs de la semaine prédite:

On aggrège les données à la France entière:

5 Prédire le nombre d’hospitalisation de la semaine à venir

5.1 Modèle linéaire 1 (sur les départements) en fonction du nombre de cas détectés positifs : 1 modèle par région

Ici, pour chaque région \(r\), le modèle est de la forme

\[y_{i,t}^r=\beta_0^r+\beta_1^rx_{i,t'}^r+\epsilon_{i,t}^r\] avec:

  • \(y_{i,t}\) le nombre d’entrées à l’hôpital dans le département \(i\in r\) sur la période \(t\), où \(t\) est une fenêtre de 7 jours.
  • \(x_{i,t'}\) est le nombre de testés positifs dans le département \(i\in r\) sur la période \(t'\)\(t'\) correspond à la fenêtre \(t\), décalé de 10 jours.

En d’autres termes, on fait ici un modèle de régression par région. Cela suppose que le lien entre les tests virologiques et le nombre d’hospitalisation est homogène à l’intérieur d’une région et peut différer d’une région à une autre.

Apprentissage:

On modélise sur les observations des semaines précédentes:

Dependent variable:
hosp
regionAuvergne-Rhône-Alpes 8.739***
(1.657)
regionBourgogne-Franche-Comté 4.778**
(2.071)
regionBretagne 1.960
(3.109)
regionCentre-Val de Loire 5.364**
(2.460)
regionCorse 1.310
(4.389)
regionDOM-TOM 0.964
(3.089)
regionGrand Est 10.973***
(1.846)
regionHauts-de-France 13.799***
(2.567)
regionIle-de-France 23.790***
(2.359)
regionNormandie 2.916
(2.671)
regionNouvelle-Aquitaine 1.593
(1.702)
regionOccitanie 1.553
(1.608)
regionPays de la Loire 8.424***
(2.719)
regionProvence-Alpes-Côte d’Azur 4.503*
(2.414)
regionAuvergne-Rhône-Alpes:tranche_0 0.062***
(0.001)
regionBourgogne-Franche-Comté:tranche_0 0.072***
(0.003)
regionBretagne:tranche_0 0.050***
(0.004)
regionCentre-Val de Loire:tranche_0 0.053***
(0.004)
regionCorse:tranche_0 0.038*
(0.021)
regionDOM-TOM:tranche_0 0.113***
(0.008)
regionGrand Est:tranche_0 0.058***
(0.002)
regionHauts-de-France:tranche_0 0.053***
(0.001)
regionIle-de-France:tranche_0 0.056***
(0.001)
regionNormandie:tranche_0 0.066***
(0.003)
regionNouvelle-Aquitaine:tranche_0 0.058***
(0.002)
regionOccitanie:tranche_0 0.053***
(0.002)
regionPays de la Loire:tranche_0 0.047***
(0.003)
regionProvence-Alpes-Côte d’Azur:tranche_0 0.085***
(0.001)
Observations 2,929
R2 0.940
Adjusted R2 0.939
Residual Std. Error 28.152 (df = 2901)
F Statistic 1,623.091*** (df = 28; 2901)
Note: p<0.1; p<0.05; p<0.01

On représente comme si on on avait fait un modèle par région pour faciliter la lecture des coefficients :

Dependent variable:
hosp
Auvergne-Rhône-Alpes Hauts-de-France Provence-Alpes-Côte d’Azur Grand Est Occitanie Normandie Nouvelle-Aquitaine Centre-Val de Loire Bourgogne-Franche-Comté Bretagne Corse Pays de la Loire Ile-de-France DOM-TOM
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
tranche_0 0.062*** 0.053*** 0.085*** 0.058*** 0.053*** 0.066*** 0.058*** 0.053*** 0.072*** 0.050*** 0.038*** 0.047*** 0.056*** 0.113***
(0.001) (0.001) (0.002) (0.002) (0.001) (0.002) (0.001) (0.002) (0.002) (0.002) (0.003) (0.002) (0.001) (0.007)
Constant 8.739*** 13.799*** 4.503 10.973*** 1.553** 2.916* 1.593** 5.364*** 4.778*** 1.960 1.310** 8.424*** 23.790*** 0.964
(2.227) (3.919) (4.472) (1.529) (0.695) (1.744) (0.798) (1.360) (1.694) (1.287) (0.528) (1.709) (3.719) (2.487)
Observations 348 145 174 290 377 145 348 174 232 116 58 145 232 145
R2 0.940 0.943 0.912 0.838 0.938 0.914 0.879 0.791 0.839 0.885 0.800 0.853 0.909 0.674
Adjusted R2 0.940 0.943 0.911 0.837 0.938 0.913 0.878 0.790 0.838 0.884 0.796 0.852 0.908 0.671
Residual Std. Error 37.834 (df = 346) 42.988 (df = 143) 52.145 (df = 172) 23.319 (df = 288) 12.159 (df = 375) 18.385 (df = 143) 13.199 (df = 346) 15.568 (df = 172) 23.033 (df = 230) 11.654 (df = 114) 3.387 (df = 56) 17.695 (df = 143) 44.386 (df = 230) 22.666 (df = 143)
F Statistic 5,444.201*** (df = 1; 346) 2,372.279*** (df = 1; 143) 1,772.826*** (df = 1; 172) 1,485.816*** (df = 1; 288) 5,698.091*** (df = 1; 375) 1,521.093*** (df = 1; 143) 2,503.439*** (df = 1; 346) 651.886*** (df = 1; 172) 1,194.483*** (df = 1; 230) 876.491*** (df = 1; 114) 223.734*** (df = 1; 56) 828.943*** (df = 1; 143) 2,292.013*** (df = 1; 230) 295.013*** (df = 1; 143)
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle:

L’écart quadratique moyen est égal ici à :

## [1] 2989.019

5.2 Modèle linéaire 2 (sur les région) : 1 modèle par classe d’âge

Ici, on va faire un modèle qui prend en compte les classes d’âges. Les données d’hospitalisation par classe d’âge ne sont disponibles que par région. Le modèle est de la forme

\[y_{i,t}^a=\beta_0^a+\beta_1^ax_{i,t'}^a+\epsilon_{i,t}^a\] avec:

  • \(y_{i,t}\) le nombre d’entrées de la classe d’âge \(a\) à l’hôpital dans la région \(i\) sur la période \(t\), où \(t\) est une fenêtre de 7 jours.

  • \(x_{i,t'}\) est le nombre de testés positifs de la classe d’âge \(a\) dans la région \(i\) sur la période \(t'\)\(t'\) correspond à la fenêtre \(t\), décalé de 10 jours.

En d’autres termes, on fait ici un modèle de régression par classe d’âge, toute région confondue. Cela suppose que le lien entre les tests virologiques et le nombre d’hospitalisation est homogène dans une classe d’âge quelque soit les régions.

On merge avec le nombre de test positifs:

Apprentissage:

On modélise sur les observations des semaines précédentes et on représente les résultats tranche d’âge par tranche d’âge

Dependent variable:
hosp_9 hosp_19 hosp_29 hosp_39 hosp_49 hosp_59 hosp_69 hosp_79 hosp_89 hosp_90
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
tranche_9 0.019***
(0.001)
tranche_19 0.004***
(0.0002)
tranche_29 0.008***
(0.0002)
tranche_39 0.014***
(0.0003)
tranche_49 0.022***
(0.0004)
tranche_59 0.046***
(0.001)
tranche_69 0.104***
(0.001)
tranche_79 0.219***
(0.004)
tranche_89 0.336***
(0.006)
tranche_90 0.277***
(0.006)
Constant 0.876*** 1.039*** 2.758*** 3.875*** 4.305*** 4.712*** 7.232*** 9.770*** 13.812*** 8.843***
(0.275) (0.236) (0.438) (0.534) (0.657) (1.122) (1.508) (2.544) (2.929) (1.720)
Observations 406 406 406 406 406 406 406 406 406 406
R2 0.487 0.536 0.765 0.843 0.890 0.914 0.932 0.892 0.896 0.849
Adjusted R2 0.486 0.535 0.765 0.843 0.890 0.913 0.932 0.892 0.896 0.849
Residual Std. Error (df = 404) 4.829 4.202 7.824 9.720 11.970 20.436 27.489 46.323 53.383 31.463
F Statistic (df = 1; 404) 383.499*** 466.613*** 1,316.694*** 2,169.655*** 3,280.991*** 4,272.292*** 5,537.045*** 3,352.963*** 3,475.000*** 2,278.220***
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle. On revient sur les données départementales, on suppose donc que les modèles estimés pour chaque tranche d’âge sur les régions est valable aussi pour les départements.

On a donc une prédiction par tranche d’âge et pour obtenir la prédiction finale, il faut donc faire la somme sur les différentes prédictions :

L’écart quadratique moyen est égal ici à :

## [1] 2401.488

5.3 Modèle de série temporelle

On utilise la même stratégie que celle présentée pour prédire le nombre de cas positifs.

Etape d’apprentissage : on entraîne l’agorithme sur les données passées en enlevant la dernière semaine observée et on prédit sur cette semaine afin de calculer les écarts quadratiques avec les valeurs observées.

On obtient le graphique suivant de valeurs prédites/valeurs observées :

L’écart quadratique moyen est égal ici à :

## [1]  938.6744 1320.9703  867.5446

Les 3 prédictions sont très proches et on va choisir un algorithme de type stepwise sur les prédictions pour choisir la meilleure combinaison des modèles de séries temporelles.

## Start:  AIC=670.89
## my_basis[my_basis$semaine == "semaine_t00", "hosp"] ~ pred_3a + 
##     pred_3b + pred_3c - 1
## 
##           Df Sum of Sq   RSS    AIC
## <none>                 72996 670.89
## - pred_3b  1    7788.8 80785 679.13
## - pred_3a  1   12238.3 85235 684.54
## - pred_3c  1   17078.5 90075 690.12
## [1] 722.7375

On a donc 3 prédictions obtenues selon :

  • modèle par région
  • modèle par classe d’âge
  • modèle de séries temporelles (lui-même combinaison de plusieurs méthodes)

5.4 Combinaison des prédictions

Combinaison des prédictions:

  • pour prédire les nouvelles hospitalisations la semaine à venir, on va faire un panaché des trois prédictions en donnant plus de poids à la prédiction qui a le mieux marcher sur la semaine \(t_0\). Autrement dit, on fait un modèle linéaire (avec une procédure stepwise) du nombre d’hospitalisation en fonction des 3 méthodes de prédictions. On calcule l’écart quatratique moyen de la combinaison des prédictions.
## [1] 665.162
  • pour prédire les nouvelles hospitalisations la semaine d’après, on va utiliser une autre pondération en utilisant la même procédure que précédemment, mais dans une optique de prédire à deux semaines.
## Start:  AIC=1425.21
## y_true ~ pred_3a_s2 + pred_3b_s2 + pred_3c_s2 - 1
## 
##              Df Sum of Sq    RSS    AIC
## - pred_3b_s2  1         0 227304 1423.2
## <none>                    227303 1425.2
## - pred_3a_s2  1     15899 243202 1436.9
## - pred_3c_s2  1     50421 277725 1463.7
## 
## Step:  AIC=1423.21
## y_true ~ pred_3a_s2 + pred_3c_s2 - 1
## 
##              Df Sum of Sq    RSS    AIC
## <none>                    227304 1423.2
## - pred_3a_s2  1     28156 255459 1444.8
## - pred_3c_s2  1     54186 281489 1464.4

5.5 Prédiction

On prédit le nombre d’hospitalisations :

  • du [14 décembre 2020; 20 décembre 2020] en utilisant les vrais valeurs du nombre de testé positifs la semaine du [04 décembre 2020; 10 décembre 2020].

  • du [21 décembre 2020; 27 décembre 2020] en utilisant les valeurs prédites du nombre de testé positifs la semaine du [11 décembre 2020; 17 décembre 2020].

Avant de faire cela, on actualise en incluant dans l’étape d’apprentissage les données de la dernière semaine observée:

# modèle 1
res_lm <- lm(hosp ~  tranche_0, data = my_basis[!(my_basis$semaine %in% "semaine_t0-1"), ])
# modèle 2
apprentissage_sample <- my_basis_age_wide[!(my_basis_age_wide$semaine %in% 
                                              c("semaine_t0-1")), ]
res_lm_9 <- lm(hosp_9 ~  tranche_9, data = apprentissage_sample)
res_lm_19 <- lm(hosp_19 ~  tranche_19, data = apprentissage_sample)
res_lm_29 <- lm(hosp_29 ~  tranche_29, data = apprentissage_sample)
res_lm_39 <- lm(hosp_39 ~  tranche_39, data = apprentissage_sample)
res_lm_49 <- lm(hosp_49 ~  tranche_49, data = apprentissage_sample)
res_lm_59 <- lm(hosp_59 ~  tranche_59, data = apprentissage_sample)
res_lm_69 <- lm(hosp_69 ~  tranche_69, data = apprentissage_sample)
res_lm_79 <- lm(hosp_79 ~  tranche_79, data = apprentissage_sample)
res_lm_89 <- lm(hosp_89 ~  tranche_89, data = apprentissage_sample)
res_lm_90 <- lm(hosp_90 ~  tranche_90, data = apprentissage_sample)

# On prédit avec la méthode 1 
new_data <- my_basis[my_basis$semaine %in% c("semaine_t0-1", "semaine_t0-2"), ]
pred_1 <- predict(res_lm, newdata = new_data)
# On prédit avec la méthode 2
test_sample <- my_basis[my_basis$semaine %in% c("semaine_t0-1", "semaine_t0-2"), ]
pred_9 <- predict(res_lm_9, newdata = test_sample)
pred_19 <- predict(res_lm_19, newdata = test_sample)
pred_29 <- predict(res_lm_29, newdata = test_sample)
pred_39 <- predict(res_lm_39, newdata = test_sample)
pred_49 <- predict(res_lm_49, newdata = test_sample)
pred_59 <- predict(res_lm_59, newdata = test_sample)
pred_69 <- predict(res_lm_69, newdata = test_sample)
pred_79 <- predict(res_lm_79, newdata = test_sample)
pred_89 <- predict(res_lm_89, newdata = test_sample)
pred_90 <- predict(res_lm_90, newdata = test_sample)
pred_2 <- pred_9 + pred_19 + pred_29 + pred_39 + pred_49 + pred_59 + pred_69 + 
  pred_79 + pred_89 + pred_90

# on prédit avec le modèle 3, mais on actualise les prédictions semaine par semaine
pred_3 <- matrix(0, length(nom_dep), 2)
for (k in 1:length(nom_dep)) {
 if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_3[k, ] <- NA
  } else {
    temp <- hospital[!(hospital$semaine %in% c("semaine_t0-2", "semaine_t0-1")) & 
                     hospital$dep == nom_dep[k], ]
    my_ts <- zoo(temp$incid_hosp, temp$jour)
    my_ts_diff <- diff(my_ts)
    # tseries::adf.test(my_ts) 
    # tseries::adf.test(my_ts_diff)
    # predictions à 7 jours
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod, h = 14)$mean)
    pred_3a_s1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    # prediction à 14 jours
    pred_3a_s2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - pred_3a_s1
    # Lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 14)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b_s1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
    pred_3b_s2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - pred_3b_s1
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-2", "semaine_t0-1")), ]
    my_ts_exp <- zoo(temp$hosp, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c_s1 <- round(forecast_my_mod_exp[1], 0)
    pred_3c_s2 <- round(forecast_my_mod_exp[2], 0)
    
    # prédictions des time series
    pred_3[k, 1] <- predict(lm_3_ts, newdata = data.frame(pred_3a = pred_3a_s1,
                                                 pred_3b = pred_3b_s1,
                                                 pred_3c = pred_3c_s1))
    
    # prediction à 14 jours
    pred_3[k, 2] <- predict(lm_3b_ts, newdata = data.frame(pred_3a_s2 = pred_3a_s2,
                                                 pred_3b_s2 = pred_3b_s2,
                                                 pred_3c_s2 = pred_3c_s2))
  }
}
pred_3 <- as.vector(pred_3)
# On fait le mélande des deux prédictions
res_pred_a <- predict(lm_3, newdata = data.frame(pred_1 = pred_1[new_data$semaine == "semaine_t0-1"], 
                                               pred_2 = pred_2[test_sample$semaine == "semaine_t0-1"],
                                               pred_3 = pred_3[1:(length(pred_3) / 2)]))
res_pred_b <- predict(lm_3b, newdata = data.frame(
  pred_1_s2 = pred_1[new_data$semaine == "semaine_t0-2"],
  pred_2_s2 = pred_2[test_sample$semaine == "semaine_t0-2"],
  pred_3_s2 = pred_3[((length(pred_3) / 2) + 1):length(pred_3)]))
new_data <- my_basis[my_basis$semaine %in% "semaine_t0-1", ]
my_basis[my_basis$semaine %in% "semaine_t0-1", "hosp"] <- res_pred_a
my_basis[my_basis$semaine %in% "semaine_t0-2", "hosp"] <- res_pred_b
new_data$next_week <- res_pred_a
new_data$next_two_week <- res_pred_b

On va représenter l’évolution du nombre de nouveaux patients hospitalisés dans un intervalle de temps de 4 semaines :

  • la semaine du [30 novembre 2020; 06 décembre 2020]
  • les 7 derniers jours passés : [07 décembre 2020; 13 décembre 2020]
  • la semaine à venir : [14 décembre 2020; 20 décembre 2020]
  • la semaine suivante à venir : [21 décembre 2020; 27 décembre 2020]

On aggrège les données à la France entière:

6 Prédire le nombre de réanimations

L’idée est d’expliquer le nombre de nouvelles réanimations la semaine \(t\) par le nombre de nouvelles hospitalisations la semaine \(t-1\).

Ainsi on sera en mesure de prédire le nombre de nouvelles réanimations d’une part la semaine à venir, mais aussi la semaine d’après si on utilise les prédictions du nombre d’hospitalisation la semaine à venir.

On prépare les données et on représente le nombre de nouvelles réanimations par semaine et par département en fonction du nombre de nouvelles hospitalisations la semaine d’avant et on constate un lien très fort.

On ne va faire que deux modèles :

On n’utilise pas le modèle qui utilise les classes d’âges car c’est difficile d’avoir le nombre de nouvelles réanimations par jour/département par classe d’âge. Il se peut donc que les prédictions soient sous-estimées dans le cas où la distribution des patients hospitalisés agés évolue positivement au cours du temps.

6.1 Modèle 1 : modèle linéaire

Apprentissage:

On modélise sur les observations des semaines précédentes:

Dependent variable:
rea
regionAuvergne-Rhône-Alpes -0.195
(0.413)
regionBourgogne-Franche-Comté 0.607
(0.513)
regionBretagne 0.798
(0.766)
regionCentre-Val de Loire 0.164
(0.624)
regionCorse 0.285
(1.140)
regionDOM-TOM 1.928***
(0.718)
regionGrand Est 0.157
(0.480)
regionHauts-de-France 0.672
(0.645)
regionIle-de-France -0.268
(0.613)
regionNormandie 0.203
(0.661)
regionNouvelle-Aquitaine 0.228
(0.419)
regionOccitanie 0.150
(0.397)
regionPays de la Loire 0.543
(0.707)
regionProvence-Alpes-Côte d’Azur -0.157
(0.593)
regionAuvergne-Rhône-Alpes:hosp 0.148***
(0.002)
regionBourgogne-Franche-Comté:hosp 0.127***
(0.008)
regionBretagne:hosp 0.127***
(0.019)
regionCentre-Val de Loire:hosp 0.166***
(0.016)
regionCorse:hosp 0.164
(0.121)
regionDOM-TOM:hosp 0.096***
(0.014)
regionGrand Est:hosp 0.136***
(0.007)
regionHauts-de-France:hosp 0.174***
(0.003)
regionIle-de-France:hosp 0.181***
(0.003)
regionNormandie:hosp 0.136***
(0.009)
regionNouvelle-Aquitaine:hosp 0.139***
(0.010)
regionOccitanie:hosp 0.200***
(0.007)
regionPays de la Loire:hosp 0.134***
(0.013)
regionProvence-Alpes-Côte d’Azur:hosp 0.152***
(0.003)
Observations 2,828
R2 0.881
Adjusted R2 0.880
Residual Std. Error 6.829 (df = 2800)
F Statistic 740.585*** (df = 28; 2800)
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle:

L’écart quadratique moyen est égal ici à :

## [1] 29.15538

6.2 Modèle 2 : série temporelle

On utilise la même stratégie que celle présentée pour prédire le nombre de nouveaux cas positifs et de nouvelles réanimations.

Etape d’apprentissage : on entraîne l’agorithme sur les données passées en enlevant la dernière semaine observée et on prédit sur cette semaine afin de calculer les écarts quadratiques avec les valeurs observées.

On observe le graphique des valeurs prédites/valeurs observées :

L’écart quadratique moyen est égal ici à :

## [1] 69.16617 69.32673 36.04950

Les 3 prédictions sont très proches et on va choisir un algorithme de type stepwise sur les prédictions pour choisir la meilleure combinaison et ne conserver qu’une seule prédiction basée sur les séries temporelles:

## Start:  AIC=356.75
## my_basis[my_basis$semaine == "semaine_t00", "rea"] ~ pred_rea_2a + 
##     pred_rea_2b + pred_rea_2c - 1
## 
##               Df Sum of Sq    RSS    AIC
## - pred_rea_2a  1     12.40 3267.3 355.14
## <none>                     3254.9 356.75
## - pred_rea_2b  1    213.99 3468.9 361.18
## - pred_rea_2c  1   3040.10 6295.0 421.37
## 
## Step:  AIC=355.14
## my_basis[my_basis$semaine == "semaine_t00", "rea"] ~ pred_rea_2b + 
##     pred_rea_2c - 1
## 
##               Df Sum of Sq    RSS    AIC
## <none>                     3267.3 355.14
## - pred_rea_2b  1     237.1 3504.4 360.21
## - pred_rea_2c  1    3444.7 6712.0 425.85
## [1] 32.34953

6.3 Combinaison des prédictions

Combinaison des prédictions: on peut envisager de faire un panaché des deux prédictions. Autrement dit, on fait un modèle linéaire (avec une procédure stepwise) du nombre de réanimations observée la semaine t0 en fonction des 2 méthodes de prédictions. On obtient l’écart-quadratique moyen suivant:

## [1] 20.6803

On adapte le poids des prédictions en fonction de la semaine à prédire

semaine_to_drop <- c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")
pred_rea_1_s2 <- pred_rea_1
pred_rea_2a_s2 <- pred_rea_2a
pred_rea_2b_s2 <- pred_rea_2b
pred_rea_2c_s2 <- pred_rea_2c

y_true <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]

for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "rea"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 1))
  res_lm_rea_1 <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% semaine_to_drop), ])
  pred_rea_1_s2 <- c(pred_rea_1_s2, 
     round(predict(res_lm_rea_1, newdata = my_basis_rea[my_basis_rea$semaine == semaine_to_estim, ])))
  pred_rea_2a_temp <- numeric(length(nom_dep))
  pred_rea_2b_temp <- numeric(length(nom_dep))
  pred_rea_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
    temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & 
                     hospital$dep == nom_dep[k], ]
    my_ts <- zoo(temp$incid_rea, temp$jour)
    my_ts_diff <- diff(my_ts)
    # tseries::adf.test(my_ts) 
    # tseries::adf.test(my_ts_diff)
    if (nom_dep[k] %in% c("975", "977", "978")) {
      pred_rea_2[k] <- NA
    } else {
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod, h = 14)$mean)
      temp <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
      pred_rea_2a_temp[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp
      # modèles exponentiels
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 14)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      temp <- round(sum(forecast_my_mod_exp[1:7]), 0)
      pred_rea_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
      my_ts_exp <- zoo(temp$rea, temp$jour)
      if (all(my_ts_exp == 0)) {
        pred_rea_2c_temp[k] <- 0
      } else {
        my_mod_exp_2 <- ets(my_ts_exp)
        forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
        forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
        pred_rea_2c_temp[k] <- round(forecast_my_mod_exp[2], 0)
      }
    }
    
  }
   pred_rea_2a_s2 <- c(pred_rea_2a_s2, pred_rea_2a_temp)
   pred_rea_2b_s2 <- c(pred_rea_2b_s2, pred_rea_2b_temp)
   pred_rea_2c_s2 <- c(pred_rea_2c_s2, pred_rea_2c_temp)
}


lm_2_rea_ts_s1 <- step(lm(y_true ~ pred_rea_2a_s2 + pred_rea_2b_s2 + pred_rea_2c_s2 - 1))
## Start:  AIC=710.83
## y_true ~ pred_rea_2a_s2 + pred_rea_2b_s2 + pred_rea_2c_s2 - 1
## 
##                  Df Sum of Sq     RSS    AIC
## - pred_rea_2a_s2  1      21.8  6639.6 709.49
## <none>                         6617.9 710.83
## - pred_rea_2b_s2  1      80.0  6697.9 711.26
## - pred_rea_2c_s2  1    4153.8 10771.7 807.23
## 
## Step:  AIC=709.49
## y_true ~ pred_rea_2b_s2 + pred_rea_2c_s2 - 1
## 
##                  Df Sum of Sq     RSS    AIC
## - pred_rea_2b_s2  1      58.3  6697.9 709.26
## <none>                         6639.6 709.49
## - pred_rea_2c_s2  1    9224.0 15863.7 883.43
## 
## Step:  AIC=709.26
## y_true ~ pred_rea_2c_s2 - 1
## 
##                  Df Sum of Sq   RSS     AIC
## <none>                         6698  709.26
## - pred_rea_2c_s2  1     64042 70740 1183.42
pred_rea_2_s2 <- predict(lm_2_rea_ts_s1)

lm_rea_3b <- lm(y_true ~ pred_rea_1_s2 + pred_rea_2_s2 - 1)



#######

semaine_to_drop <- c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00", "semaine_t01")
pred_rea_1_s3 <- pred_rea_1
pred_rea_2a_s3 <- pred_rea_2a
pred_rea_2b_s3 <- pred_rea_2b
pred_rea_2c_s3 <- pred_rea_2c

y_true <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]

for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "rea"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 2))
  
  res_lm_rea_1 <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% semaine_to_drop), ])
  pred_rea_1_s3 <- c(pred_rea_1_s3, round(predict(res_lm_rea_1, newdata = my_basis_rea[my_basis_rea$semaine == semaine_to_estim, ])))
  
  pred_rea_2a_temp <- numeric(length(nom_dep))
  pred_rea_2b_temp <- numeric(length(nom_dep))
  pred_rea_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
     temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & hospital$dep == nom_dep[k], ]
     my_ts <- zoo(temp$incid_rea, temp$jour)
     my_ts_diff <- diff(my_ts)
     # tseries::adf.test(my_ts) 
     # tseries::adf.test(my_ts_diff)
     if (nom_dep[k] %in% c("975", "977", "978")) {
       pred_rea_2[k] <- NA
     } else {
       my_mod <- forecast::auto.arima(my_ts_diff)
       forecast_my_mod <- as.numeric(forecast(my_mod, h = 21)$mean)
       temp1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
       temp2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp1
       pred_rea_2a_temp[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - temp1 - temp2
       # modèles exponentiels
       # Méthode 2 : lissage exponentiel
       my_mod_exp <- ets(my_ts)
       forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 21)$mean)
       forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
       temp1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
       temp2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp1
       pred_rea_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:21]), 0) - temp2 - temp1
       # Méthode 3 : lissage exponentiel sur données hebdomadaires
       temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
       my_ts_exp <- zoo(temp$rea, temp$jour)
       if (all(my_ts_exp == 0)) {
         pred_rea_2c_temp[k] <- 0
       } else {
         my_mod_exp_2 <- ets(my_ts_exp)
         forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
         forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
         pred_rea_2c_temp[k] <- round(forecast_my_mod_exp[3], 0)
       }
    }
}

  pred_rea_2a_s3 <- c(pred_rea_2a_s3, pred_rea_2a_temp)
  pred_rea_2b_s3 <- c(pred_rea_2b_s3, pred_rea_2b_temp)
  pred_rea_2c_s3 <- c(pred_rea_2c_s3, pred_rea_2c_temp)
}

lm_2_rea_ts_s2 <- step(lm(y_true ~ pred_rea_2a_s3 + pred_rea_2b_s3 + pred_rea_2c_s3 - 1))
## Start:  AIC=806.31
## y_true ~ pred_rea_2a_s3 + pred_rea_2b_s3 + pred_rea_2c_s3 - 1
## 
##                  Df Sum of Sq   RSS    AIC
## - pred_rea_2a_s3  1     63.78 10680 805.52
## - pred_rea_2b_s3  1    101.36 10718 806.23
## <none>                        10617 806.31
## - pred_rea_2c_s3  1   1720.99 12338 834.65
## 
## Step:  AIC=805.52
## y_true ~ pred_rea_2b_s3 + pred_rea_2c_s3 - 1
## 
##                  Df Sum of Sq   RSS    AIC
## <none>                        10680 805.52
## - pred_rea_2b_s3  1     297.2 10978 809.06
## - pred_rea_2c_s3  1    5180.6 15861 883.40

6.4 Prédiction

On prédit:

  • le nombre de réanimations à venir du [14 décembre 2020; 20 décembre 2020] en utilisant les nouvelles hospitalisations du [07 décembre 2020; 13 décembre 2020]

  • le nombre de réanimations à venir du [21 décembre 2020; 27 décembre 2020] en utilisant la prédiction des hospitalisations à venir du [14 décembre 2020; 20 décembre 2020]

  • le nombre de réanimations à venir du [28 décembre 2020; 03 janvier 2021] en utilisant la prédiction des hospitalisations à venir du [21 décembre 2020; 27 décembre 2020]

Pour cela, on actualise le modèle, c’est-à-dire qu’on inclut la dernière semaine observée:

res_lm <- lm(rea ~  region + hosp:region - 1, 
             data = my_basis_rea[!(my_basis_rea$semaine %in% c("semaine_t0-2", "semaine_t0-1")), ])

# semaine t+1
new_data_rea_1 <- my_basis_rea[my_basis_rea$semaine %in% c("semaine_t0-1", "semaine_t0-2", "semaine_t0-3"),  ]
pred_rea_1 <- predict(res_lm, newdata = new_data_rea_1)

pred_rea_2 <- matrix(0, length(nom_dep), 3)
pred_rea_2a <- matrix(0, length(nom_dep), 3)
pred_rea_2b <- matrix(0, length(nom_dep), 3)
pred_rea_2c <- matrix(0, length(nom_dep), 3)
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_rea, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_rea_2[k] <- NA
  } else {
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod, h = 21)$mean)
    pred_3a_s1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    pred_3a_s2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - pred_3a_s1
    pred_3a_s3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - 
      pred_3a_s1 - pred_3a_s2
    # Lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 21)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b_s1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
    pred_3b_s2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - pred_3b_s1
    pred_3b_s3 <- round(sum(forecast_my_mod_exp[1:21]), 0) - pred_3b_s2 - pred_3b_s1
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-3", "semaine_t0-2", "semaine_t0-1")), ]
    my_ts_exp <- zoo(temp$rea, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c_s1 <- round(forecast_my_mod_exp[1], 0)
    pred_3c_s2 <- round(forecast_my_mod_exp[2], 0)
    pred_3c_s3 <- round(forecast_my_mod_exp[3], 0)    
    
    pred_rea_2[k, 1] <- predict(lm_2_rea_ts, newdata = data.frame(pred_rea_2a = pred_3a_s1,
                                                 pred_rea_2b = pred_3b_s1,
                                                 pred_rea_2c = pred_3c_s1))
    pred_rea_2[k, 2] <- predict(lm_2_rea_ts_s1, newdata = data.frame(pred_rea_2a_s2 = pred_3a_s2,
                                                 pred_rea_2b_s2 = pred_3b_s2,
                                                 pred_rea_2c_s2 = pred_3c_s2))
    pred_rea_2[k, 3] <- predict(lm_2_rea_ts_s2, newdata = data.frame(pred_rea_2a_s3 = pred_3a_s3,
                                                 pred_rea_2b_s3 = pred_3b_s3,
                                                 pred_rea_2c_s3 = pred_3c_s3))
  }
}

pred_rea_a <- predict(lm_rea_3, newdata = data.frame(pred_rea_1 = 
                        pred_rea_1[new_data_rea_1$semaine == "semaine_t0-1"],
                        pred_rea_2 = as.vector(pred_rea_2)[1:(length(pred_rea_1) / 3)]))

pred_rea_b <- predict(lm_rea_3b, newdata = data.frame(
  pred_rea_1_s2 = pred_rea_1[new_data_rea_1$semaine == "semaine_t0-2"],
  pred_rea_2_s2 = as.vector(pred_rea_2)[((length(pred_rea_1) / 3) + 1):(2 * length(pred_rea_1) / 3)]))

pred_rea_c <- predict(lm_rea_3c, newdata = data.frame(
  pred_rea_1_s3 = pred_rea_1[new_data_rea_1$semaine == "semaine_t0-3"],
  pred_rea_2_s3 = as.vector(pred_rea_2)[(2 * length(pred_rea_1) / 3 + 1):length(pred_rea_1)]))

# on synthétise les résultats
new_data <- my_basis[my_basis$semaine %in% "semaine_t0-1", ]
new_data$this_week <- my_basis_rea[my_basis_rea$semaine == "semaine_t00", "rea"]
new_data$next_week <- pred_rea_a
new_data$next_two_week <- pred_rea_b
new_data$next_three_week <- pred_rea_c
my_basis[my_basis$semaine %in% "semaine_t0-1", "rea"] <- pred_rea_a
my_basis[my_basis$semaine %in% "semaine_t0-2", "rea"] <- pred_rea_b
my_basis[my_basis$semaine %in% "semaine_t0-3", "rea"] <- pred_rea_c

On va représenter l’évolution du nombre de patients en réanimations dans un intervalle de temps de 4 semaines :

  • les 7 derniers jours passés : [07 décembre 2020; 13 décembre 2020]
  • la semaine à venir : [14 décembre 2020; 20 décembre 2020]
  • la 2ème semaine à venir : [21 décembre 2020; 27 décembre 2020]
  • la 3ème semaine à venir : [28 décembre 2020; 03 janvier 2021]

On aggrège les données à la France entière:

7 Prédire le nombre de décès

L’idée est d’expliquer le nombre de nouveaux décès la semaine \(t\) par les nouvelles réanimations la semaine \(t-1\).

Ainsi on sera en mesure de prédire le nombre de nouveaux décès la semaine à venir, mais aussi les trois semaines suivantes en utilisant les prédictions des hospitalisations, des réanimations et cas positifs.

On prépare les données et on représente le nombre de nouveaux décès par semaine et par département en fonction du nombre de nouvelles réanimations la semaine d’avant et on constate un lien très fort.

On va faire deux modèles : un modèle régional où on explique les nouvelles réanimations des départements au sein d’une même région ainsi qu’un modèle de série temporelle département par département.

7.1 Modèle 1 : modèle linéaire

Apprentissage:

On modélise sur les observations des semaines précédentes:

Dependent variable:
dc
regionAuvergne-Rhône-Alpes 2.433***
(0.389)
regionBourgogne-Franche-Comté 1.228**
(0.482)
regionBretagne 0.616
(0.728)
regionCentre-Val de Loire 1.761***
(0.567)
regionCorse 0.112
(1.071)
regionDOM-TOM -0.535
(0.733)
regionGrand Est 1.389***
(0.447)
regionHauts-de-France 1.500**
(0.614)
regionIle-de-France 5.634***
(0.552)
regionNormandie 0.469
(0.622)
regionNouvelle-Aquitaine 1.141***
(0.391)
regionOccitanie 0.843**
(0.374)
regionPays de la Loire 0.125
(0.657)
regionProvence-Alpes-Côte d’Azur 1.547***
(0.559)
regionAuvergne-Rhône-Alpes:rea 0.937***
(0.015)
regionBourgogne-Franche-Comté:rea 0.907***
(0.051)
regionBretagne:rea 0.722***
(0.111)
regionCentre-Val de Loire:rea 0.486***
(0.072)
regionCorse:rea 0.750
(0.530)
regionDOM-TOM:rea 0.578***
(0.100)
regionGrand Est:rea 0.974***
(0.045)
regionHauts-de-France:rea 0.828***
(0.017)
regionIle-de-France:rea 0.574***
(0.014)
regionNormandie:rea 1.171***
(0.060)
regionNouvelle-Aquitaine:rea 0.664***
(0.058)
regionOccitanie:rea 0.586***
(0.031)
regionPays de la Loire:rea 0.921***
(0.074)
regionProvence-Alpes-Côte d’Azur:rea 0.849***
(0.019)
Observations 2,828
R2 0.860
Adjusted R2 0.858
Residual Std. Error 6.562 (df = 2800)
F Statistic 612.582*** (df = 28; 2800)
Note: p<0.1; p<0.05; p<0.01

Test:

On teste le modèle sur les données de la semaine actuelle:

L’écart quadratique moyen est égal ici à :

## [1] 225.2279

7.2 Modèle 2 : série temporelle

On utilise la même stratégie que celle présentée pour prédire le nombre de nouveaux cas, de nouvelles hospitalisations et de nouvelles réanimations.

Etape d’apprentissage : on entraîne l’agorithme sur les données passées en enlevant la dernière semaine observée et on prédit sur cette semaine afin de calculer les écarts quadratiques avec les valeurs observées.

On représente le graphique des valeurs prédites / valeurs observées :

L’écart quadratique moyen est égal ici à :

## [1] 85.2181 94.9703 88.9604

Les 3 prédictions sont très proches et on va choisir un algorithme de type stepwise sur les prédictions pour choisir la meilleure combinaison et ne garder qu’une prédiction de type série temporelle:

## Start:  AIC=433.07
## my_basis[my_basis$semaine == "semaine_t00", "dc"] ~ pred_dc_2a + 
##     pred_dc_2b + pred_dc_2c - 1
## 
##              Df Sum of Sq    RSS    AIC
## - pred_dc_2b  1     44.64 6974.0 431.72
## <none>                    6929.3 433.07
## - pred_dc_2a  1    567.36 7496.7 439.02
## - pred_dc_2c  1   1209.48 8138.8 447.32
## 
## Step:  AIC=431.72
## my_basis[my_basis$semaine == "semaine_t00", "dc"] ~ pred_dc_2a + 
##     pred_dc_2c - 1
## 
##              Df Sum of Sq    RSS    AIC
## <none>                    6974.0 431.72
## - pred_dc_2c  1    1221.7 8195.6 446.02
## - pred_dc_2a  1    1323.3 8297.3 447.26
## [1] 69.04904

7.3 Combinaison des prédictions

Combinaison des prédictions: on peut envisager de faire un panaché des deux prédictions en régressant (avec un algorithme de type stepwise) le nombre de décés observé la semaine t0 en fonction des deux méthodes de régression. On obtient l’écart moyen quadratique suivant :

## [1] 63.15969

On adapte le poids des prédictions en fonction de la semaine à prédire

semaine_to_drop <- c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00")
pred_dc_1_s2 <- pred_dc_1
pred_dc_2a_s2 <- pred_dc_2a
pred_dc_2b_s2 <- pred_dc_2b
pred_dc_2c_s2 <- pred_dc_2c

y_true <- my_basis[my_basis$semaine == "semaine_t00", "dc"]

for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "dc"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 1))
  res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% semaine_to_drop), ])
  pred_dc_1_s2 <- c(pred_dc_1_s2, 
     round(predict(res_lm_dc_1, newdata = my_basis_dc[my_basis_dc$semaine == semaine_to_estim, ])))
  pred_dc_2a_temp <- numeric(length(nom_dep))
  pred_dc_2b_temp <- numeric(length(nom_dep))
  pred_dc_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
    temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & 
                     hospital$dep == nom_dep[k], ]
    my_ts <- zoo(temp$incid_dc, temp$jour)
    my_ts_diff <- diff(my_ts)
    # tseries::adf.test(my_ts) 
    # tseries::adf.test(my_ts_diff)
    if (nom_dep[k] %in% c("975", "977", "978")) {
      pred_dc_2[k] <- NA
    } else {
      my_mod <- forecast::auto.arima(my_ts_diff)
      forecast_my_mod <- as.numeric(forecast(my_mod, h = 14)$mean)
      temp <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
      pred_dc_2a_temp[k] <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp
      # modèles exponentiels
      # Méthode 2 : lissage exponentiel
      my_mod_exp <- ets(my_ts)
      forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 14)$mean)
      forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
      temp <- round(sum(forecast_my_mod_exp[1:7]), 0)
      pred_dc_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp
      # Méthode 3 : lissage exponentiel sur données hebdomadaires
      temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
      my_ts_exp <- zoo(temp$dc, temp$jour)
      if (all(my_ts_exp == 0)) {
        pred_dc_2c_temp[k] <- 0
      } else {
        my_mod_exp_2 <- ets(my_ts_exp)
        forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
        forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
        pred_dc_2c_temp[k] <- round(forecast_my_mod_exp[2], 0)
      }
    }
    
  }
   pred_dc_2a_s2 <- c(pred_dc_2a_s2, pred_dc_2a_temp)
   pred_dc_2b_s2 <- c(pred_dc_2b_s2, pred_dc_2b_temp)
   pred_dc_2c_s2 <- c(pred_dc_2c_s2, pred_dc_2c_temp)
}


lm_2_dc_ts_s1 <- step(lm(y_true ~ pred_dc_2a_s2 + pred_dc_2b_s2 + pred_dc_2c_s2 - 1))
## Start:  AIC=914.07
## y_true ~ pred_dc_2a_s2 + pred_dc_2b_s2 + pred_dc_2c_s2 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2b_s2  1      0.79 18100 912.08
## <none>                       18100 914.07
## - pred_dc_2a_s2  1    740.58 18840 920.17
## - pred_dc_2c_s2  1   2581.84 20682 939.00
## 
## Step:  AIC=912.08
## y_true ~ pred_dc_2a_s2 + pred_dc_2c_s2 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## <none>                       18100 912.08
## - pred_dc_2a_s2  1    1699.1 19800 928.20
## - pred_dc_2c_s2  1    2726.7 20827 938.42
pred_dc_2_s2 <- predict(lm_2_dc_ts_s1)

lm_dc_3b <- lm(y_true ~ pred_dc_1_s2 + pred_dc_2_s2 - 1)

#######
# Semaine + 2
#######

semaine_to_drop <- c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", "semaine_t00", "semaine_t01")
pred_dc_1_s3 <- pred_dc_1_s2
pred_dc_2a_s3 <- pred_dc_2a_s2
pred_dc_2b_s3 <- pred_dc_2b_s2
pred_dc_2c_s3 <- pred_dc_2c_s2


for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "dc"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 2))
  
  res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% semaine_to_drop), ])
  pred_dc_1_s3 <- c(pred_dc_1_s3, round(predict(res_lm_dc_1, 
                      newdata = my_basis_dc[my_basis_dc$semaine == semaine_to_estim, ])))
  
  pred_dc_2a_temp <- numeric(length(nom_dep))
  pred_dc_2b_temp <- numeric(length(nom_dep))
  pred_dc_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
     temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & hospital$dep == nom_dep[k], ]
     my_ts <- zoo(temp$incid_dc, temp$jour)
     my_ts_diff <- diff(my_ts)
     # tseries::adf.test(my_ts) 
     # tseries::adf.test(my_ts_diff)
     if (nom_dep[k] %in% c("975", "977", "978")) {
       pred_dc_2[k] <- NA
     } else {
       my_mod <- forecast::auto.arima(my_ts_diff)
       forecast_my_mod <- as.numeric(forecast(my_mod, h = 21)$mean)
       temp1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
       temp2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp1
       temp3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - temp1 - temp2
       pred_dc_2a_temp[k] <- ifelse(temp3 > 0, round(temp3), 0)
       # modèles exponentiels
       # Méthode 2 : lissage exponentiel
       my_mod_exp <- ets(my_ts)
       forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 21)$mean)
       forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
       temp1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
       temp2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp1
       pred_dc_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:21]), 0) - temp2 - temp1
       # Méthode 3 : lissage exponentiel sur données hebdomadaires
       temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
       my_ts_exp <- zoo(temp$dc, temp$jour)
       if (all(my_ts_exp == 0)) {
         pred_dc_2c_temp[k] <- 0
       } else {
         my_mod_exp_2 <- ets(my_ts_exp)
         forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
         forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
         pred_dc_2c_temp[k] <- round(forecast_my_mod_exp[3], 0)
       }
    }
}

  pred_dc_2a_s3 <- c(pred_dc_2a_s3, pred_dc_2a_temp)
  pred_dc_2b_s3 <- c(pred_dc_2b_s3, pred_dc_2b_temp)
  pred_dc_2c_s3 <- c(pred_dc_2c_s3, pred_dc_2c_temp)
}

lm_2_dc_ts_s2 <- step(lm(y_true ~ pred_dc_2a_s3 + pred_dc_2b_s3 + pred_dc_2c_s3 - 1))
## Start:  AIC=1417.15
## y_true ~ pred_dc_2a_s3 + pred_dc_2b_s3 + pred_dc_2c_s3 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2b_s3  1     96.32 32017 1416.1
## <none>                       31920 1417.2
## - pred_dc_2c_s3  1   1205.38 33126 1426.4
## - pred_dc_2a_s3  1   1896.84 33817 1432.6
## 
## Step:  AIC=1416.06
## y_true ~ pred_dc_2a_s3 + pred_dc_2c_s3 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## <none>                       32017 1416.1
## - pred_dc_2c_s3  1    1466.3 33483 1427.6
## - pred_dc_2a_s3  1    4795.3 36812 1456.3
pred_dc_2_s3 <- predict(lm_2_dc_ts_s2)

lm_dc_3c <- lm(y_true ~ pred_dc_1_s3 + pred_dc_2_s3 - 1)

#######
# Semaine T + 3
#######

semaine_to_drop <- c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1", 
                     "semaine_t00", "semaine_t01", "semaine_t02")
pred_dc_1_s4 <- pred_dc_1_s3
pred_dc_2a_s4 <- pred_dc_2a_s3
pred_dc_2b_s4 <- pred_dc_2b_s3
pred_dc_2c_s4 <- pred_dc_2c_s3


for (j in 0:0) {
  
  semaine_to_estim <-  paste0("semaine_t0", j)
  y_true <- c(y_true, my_basis[my_basis$semaine == semaine_to_estim, "dc"])
  semaine_to_drop <- c(semaine_to_drop, paste0("semaine_t0", j + 3))
  
  res_lm_dc_1 <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% semaine_to_drop), ])
  pred_dc_1_s4 <- c(pred_dc_1_s4, round(predict(res_lm_dc_1, 
                      newdata = my_basis_dc[my_basis_dc$semaine == semaine_to_estim, ])))
  
  pred_dc_2a_temp <- numeric(length(nom_dep))
  pred_dc_2b_temp <- numeric(length(nom_dep))
  pred_dc_2c_temp <- numeric(length(nom_dep))

  for (k in 1:length(nom_dep)) {
     temp <- hospital[!(hospital$semaine %in% semaine_to_drop) & hospital$dep == nom_dep[k], ]
     my_ts <- zoo(temp$incid_dc, temp$jour)
     my_ts_diff <- diff(my_ts)
     # tseries::adf.test(my_ts) 
     # tseries::adf.test(my_ts_diff)
     if (nom_dep[k] %in% c("975", "977", "978")) {
       pred_dc_2[k] <- NA
     } else {
       my_mod <- forecast::auto.arima(my_ts_diff)
       forecast_my_mod <- as.numeric(forecast(my_mod, h = 28)$mean)
       temp1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
       temp2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - temp1
       temp3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - temp1 - temp2 
       temp4 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:28]) - temp1 - temp2 - temp3
       pred_dc_2a_temp[k] <- ifelse(temp4 > 0, round(temp4), 0)
       # modèles exponentiels
       # Méthode 2 : lissage exponentiel
       my_mod_exp <- ets(my_ts)
       forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 28)$mean)
       forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
       temp1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
       temp2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - temp1
       temp3 <- round(sum(forecast_my_mod_exp[1:21]), 0) - temp1 - temp2
       pred_dc_2b_temp[k] <- round(sum(forecast_my_mod_exp[1:28]), 0) - temp1 - temp2 - temp3
       # Méthode 3 : lissage exponentiel sur données hebdomadaires
       temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% semaine_to_drop), ]
       my_ts_exp <- zoo(temp$dc, temp$jour)
       if (all(my_ts_exp == 0)) {
         pred_dc_2c_temp[k] <- 0
       } else {
         my_mod_exp_2 <- ets(my_ts_exp)
         forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
         forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
         pred_dc_2c_temp[k] <- round(forecast_my_mod_exp[4], 0)
       }
    }
}

  pred_dc_2a_s4 <- c(pred_dc_2a_s4, pred_dc_2a_temp)
  pred_dc_2b_s4 <- c(pred_dc_2b_s4, pred_dc_2b_temp)
  pred_dc_2c_s4 <- c(pred_dc_2c_s4, pred_dc_2c_temp)
}

lm_2_dc_ts_s3 <- step(lm(y_true ~ pred_dc_2a_s4 + pred_dc_2b_s4 + pred_dc_2c_s4 - 1))
## Start:  AIC=1966.11
## y_true ~ pred_dc_2a_s4 + pred_dc_2b_s4 + pred_dc_2c_s4 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## - pred_dc_2c_s4  1     167.2 51865 1965.4
## <none>                       51698 1966.1
## - pred_dc_2b_s4  1     994.6 52693 1971.8
## - pred_dc_2a_s4  1   17003.6 68702 2079.0
## 
## Step:  AIC=1965.42
## y_true ~ pred_dc_2a_s4 + pred_dc_2b_s4 - 1
## 
##                 Df Sum of Sq   RSS    AIC
## <none>                       51865 1965.4
## - pred_dc_2b_s4  1     833.3 52699 1969.8
## - pred_dc_2a_s4  1   22266.3 74131 2107.7

7.4 Prédiction

On prédit:

  • le nombre de décès à venir du [14 décembre 2020; 20 décembre 2020] en utilisant les nouvelles réanimations du [07 décembre 2020; 13 décembre 2020]

  • le nombre de décès à venir du [21 décembre 2020; 27 décembre 2020] en utilisant la prédiction des réanimations à venir du [14 décembre 2020; 20 décembre 2020]

  • le nombre de décès à venir du [28 décembre 2020; 03 janvier 2021] en utilisant la prédiction des réanimations à venir du [21 décembre 2020; 27 décembre 2020]

  • le nombre de décès à venir du [04 janvier 2021; 10 janvier 2021] en utilisant la prédiction des réanimations à venir du [21 décembre 2020; 27 décembre 2020]

Pour cela, on actualise le modèle, c’est-à-dire qu’on inclut la dernière semaine observée:

res_lm <- lm(dc ~  region + rea:region - 1, 
             data = my_basis_dc[!(my_basis_dc$semaine %in% c("semaine_t0-2", "semaine_t0-1")), ])

# semaine t+1
new_data_dc_1 <- my_basis_dc[my_basis_dc$semaine %in% c("semaine_t0-1", "semaine_t0-2", "semaine_t0-3", "semaine_t0-4"),  ]
pred_dc_1 <- predict(res_lm, newdata = new_data_dc_1)

pred_dc_2 <- matrix(0, length(nom_dep), 4)
pred_dc_2a <- matrix(0, length(nom_dep), 4)
pred_dc_2b <- matrix(0, length(nom_dep), 4)
pred_dc_2c <- matrix(0, length(nom_dep), 4)
for (k in 1:length(nom_dep)) {
  temp <- hospital[!(hospital$semaine %in% c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1")) & 
                     hospital$dep == nom_dep[k], ]
  my_ts <- zoo(temp$incid_dc, temp$jour)
  my_ts_diff <- diff(my_ts)
  # tseries::adf.test(my_ts) 
  # tseries::adf.test(my_ts_diff)
  if (nom_dep[k] %in% c("975", "977", "978")) {
    pred_rea_2[k] <- NA
  } else {
    my_mod <- forecast::auto.arima(my_ts_diff)
    forecast_my_mod <- as.numeric(forecast(my_mod, h = 28)$mean)
    pred_3a_s1 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:7])
    pred_3a_s2 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:14]) - pred_3a_s1
    pred_3a_s3 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:21]) - 
      pred_3a_s1 - pred_3a_s2
    pred_3a_s4 <- sum((as.numeric(my_ts[length(my_ts)]) + cumsum(forecast_my_mod))[1:28]) - 
      pred_3a_s1 - pred_3a_s2 - pred_3a_s3
        # Lissage exponentiel
    my_mod_exp <- ets(my_ts)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp, h = 28)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3b_s1 <- round(sum(forecast_my_mod_exp[1:7]), 0)
    pred_3b_s2 <- round(sum(forecast_my_mod_exp[1:14]), 0) - pred_3b_s1
    pred_3b_s3 <- round(sum(forecast_my_mod_exp[1:21]), 0) - pred_3b_s2 - pred_3b_s1
    pred_3b_s4 <- round(sum(forecast_my_mod_exp[1:28]), 0) - pred_3b_s3 - pred_3b_s2 - pred_3b_s1
    # Méthode 3 : lissage exponentiel sur données hebdomadaires
    temp <- my_basis[my_basis$dep == nom_dep[k] & !(my_basis$semaine %in% 
                                          c("semaine_t0-4", "semaine_t0-3", "semaine_t0-2", "semaine_t0-1")), ]
    my_ts_exp <- zoo(temp$dc, temp$jour)
    my_mod_exp_2 <- ets(my_ts_exp)
    forecast_my_mod_exp <- as.numeric(forecast(my_mod_exp_2)$mean)
    forecast_my_mod_exp <- ifelse(forecast_my_mod_exp > 0, forecast_my_mod_exp, 0)
    pred_3c_s1 <- round(forecast_my_mod_exp[1], 0)
    pred_3c_s2 <- round(forecast_my_mod_exp[2], 0)
    pred_3c_s3 <- round(forecast_my_mod_exp[3], 0)    
    pred_3c_s4 <- round(forecast_my_mod_exp[4], 0) 
      
    pred_dc_2[k, 1] <- predict(lm_2_dc_ts, newdata = data.frame(pred_dc_2a = pred_3a_s1,
                                                 pred_dc_2b = pred_3b_s1,
                                                 pred_dc_2c = pred_3c_s1))
    pred_dc_2[k, 2] <- predict(lm_2_dc_ts_s1, newdata = data.frame(pred_dc_2a_s2 = pred_3a_s2,
                                                 pred_dc_2b_s2 = pred_3b_s2,
                                                 pred_dc_2c_s2 = pred_3c_s2))
    pred_dc_2[k, 3] <- predict(lm_2_dc_ts_s2, newdata = data.frame(pred_dc_2a_s3 = pred_3a_s3,
                                                 pred_dc_2b_s3 = pred_3b_s3,
                                                 pred_dc_2c_s3 = pred_3c_s3))
    pred_dc_2[k, 4] <- predict(lm_2_dc_ts_s3, newdata = data.frame(pred_dc_2a_s4 = pred_3a_s4,
                                                 pred_dc_2b_s4 = pred_3b_s4,
                                                 pred_dc_2c_s4 = pred_3c_s4))  
  }
}

n_4 <- 4 * length(nom_dep) 

pred_dc_a <- predict(lm_dc_3, newdata = data.frame(pred_dc_1 = 
                        pred_dc_1[new_data_dc_1$semaine == "semaine_t0-1"],
                        pred_dc_2 = as.vector(pred_dc_2)[1:(n_4 / 4)]))

pred_dc_b <- predict(lm_dc_3b, newdata = data.frame(
  pred_dc_1_s2 = pred_dc_1[new_data_dc_1$semaine == "semaine_t0-2"],
  pred_dc_2_s2 = as.vector(pred_dc_2)[((n_4 / 4) + 1):(2 * n_4 / 4)]))

pred_dc_c <- predict(lm_dc_3c, newdata = data.frame(
  pred_dc_1_s3 = pred_dc_1[new_data_dc_1$semaine == "semaine_t0-3"],
  pred_dc_2_s3 = as.vector(pred_dc_2)[(2 * n_4 / 4 + 1):(3 * n_4 / 4)]))

pred_dc_d <- predict(lm_dc_4c, newdata = data.frame(
  pred_dc_1_s4 = pred_dc_1[new_data_dc_1$semaine == "semaine_t0-4"],
  pred_dc_2_s4 = as.vector(pred_dc_2)[(3 * n_4 / 4 + 1):n_4]))



# on synthétise les résultats
new_data <- my_basis[my_basis$semaine %in% "semaine_t0-1", ]
new_data$this_week <- my_basis_dc[my_basis_dc$semaine == "semaine_t00", "dc"]
new_data$next_week <- pred_dc_a
new_data$next_two_week <- pred_dc_b
new_data$next_three_week <- pred_dc_c
new_data$next_four_week <- pred_dc_d
my_basis[my_basis$semaine %in% "semaine_t0-1", "dc"] <- pred_dc_a
my_basis[my_basis$semaine %in% "semaine_t0-2", "dc"] <- pred_dc_b
my_basis[my_basis$semaine %in% "semaine_t0-3", "dc"] <- pred_dc_c
my_basis[my_basis$semaine %in% "semaine_t0-4", "dc"] <- pred_dc_d

On va représenter l’évolution du nombre de décès dans un intervalle de temps de 5 semaines :

  • les 7 derniers jours passés : [07 décembre 2020; 13 décembre 2020]
  • la semaine à venir : [14 décembre 2020; 20 décembre 2020]
  • la 2ème semaine à venir : [21 décembre 2020; 27 décembre 2020]
  • la 3ème semaine à venir : [28 décembre 2020; 03 janvier 2021]
  • la 4ème semaine à venir : [28 décembre 2020; 03 janvier 2021]

On aggrège les données à la France entière:

Soit un nombre de décès par jour de :

## # A tibble: 5 x 2
##   semaine                 dc
##   <fct>                <dbl>
## 1 [07 déc.; 13 déc.]    285.
## 2 [14 déc.; 20 déc.]    277.
## 3 [21 déc.; 27 déc.]    258.
## 4 [28 déc.; 03 janv.]   242.
## 5 [04 janv.; 10 janv.]  241.