Time Series with R

Summer School on Mathematical Methods in Finance and Economy

Thibault LAURENT

Toulouse School of Economics

June 2010 (slides modified in August 2010)

Toulouse School of Economics

Thibault LAURENT

Exploratory Data Analysis

Beginning TS with R How recognising a white Noise Other R tools

Identification of ARIMA

Case study

Thibault LAURENT

Time series with R

Beginning TS with R

What is a ts object ?

we simulate a random walk with cumsum and rnorm:

> wn <- cumsum(rnorm(240, 0, 1))

- we create a ts object with the function ts, using a frequency of 12 (we observe a phenomenon monthly), starting in 1990: > wn.ts <- ts(wn, start = 1990, frequency = 12)</pre>
- Time can be considered like that: one unit corresponds to one year. A year is divided into 12 (months). Thus, it is easy to visualize on the x-axis the beginning of each year. The values of time are given by the time function:
 > time(wn.ts)
- We can print only a part of the series by using the window function, here for year 2001:
 - > window(wn.ts, 2001, 2001.95)

EDA	Identification of ARIMA	Case study
0000		
0000	0000000	
	00	
Beginning TS with R		

Plot a ts object

> plot(wn.ts, main = "Simulated Random Walk", xlab = "time in year")

Simulated Random Walk

User may then use functions lines, points, abline, etc. to complete the graphic.

EDA	Identification of ARIMA	Case study
00000 0000 0	0000000 0000000 00	
Beginning TS with R		

The lag plot

We can obtain a lag plot of the observations by using the function lag.plot, applied here to the LakeHuron data included in R (see help(LakeHuron) for more details):

- > str(LakeHuron)
- > lag.plot(LakeHuron, 9, do.lines = FALSE)

Obviously, the time series is strongly auto-correlated...

Thibault LAURENT

Beginning TS with R

ACF/PACF graphic

ACF graphic > acf(wn, ylim = c(-1, 1))

Series wn

PACF

> pacf(wn, ylim = c(-1, 1))

Series wn

In this case, the series is not stationary (ACF decreasing non exponentially)

Beginning TS with R

Structural decomposition

You can draw a decomposition of the series in trend + season + error in the case of a series with seasonality (defined with frequency option in function ts) by using the function stl. For example, with the nottem data:

```
> plot(stl(nottem, "per"))
```


Thibault LAURENT

Toulouse School of Economics

How recognising a white Noise

A qq-plot graphic

In the following slides, we present some tools which are useful for detecting a white noise A gaussian sample:

- > s.norm <- rnorm(250, 0, 1)
- > qqnorm(s.norm, col = "blue")
- > qqline(s.norm, col = "red")

The random walk series:

> qqnorm(wn, col = "blue")

```
> qqline(wn, col = "red")
```


How recognising a white Noise

Tests based on Skewness/Kurtosis values

Skewness/Kurtosis may be close to 0 if the series is white noise.

```
> require(fUtilities)
```

```
> skewness(wn)
```

```
[1] -0.8164437
attr(,"method")
[1] "moment"
```

```
> kurtosis(wn)
```

```
[1] -0.1958579
attr(,"method")
[1] "excess"
```

「ロ > < 団 > < 豆 > < 豆 > < 回 > < 回 > < O < @

Thibault LAURENT

How recognising a white Noise

Tests of normality

Jarque-Bera test:

- > require(tseries)
- > jarque.bera.test(wn)

Jarque Bera Test

```
data:
            wn
    X-squared = 27.2963, df = 2, p-value = 1.182e-06
    Shapiro-Wilk normality test:
    > shapiro.test(wn)
             Shapiro-Wilk normality test
    data:
            wn
    W = 0.9218, p-value = 6.243e-10
    For the random walk, the hypothesis of normality is not accepted
    in the two tests...
Thibault LAURENT
                                                              Toulouse School of Economics
Time series with R
```

Ljung-Box statistic

Thibault LAURENT

Time series with R

Use of the function Box.test for examining the null hypothesis of independence in a given time series.

> Box.test(wn, lag = 1, type = "Ljung-Box")
> Box.test(wn, lag = 2, type = "Ljung-Box")
> Box.test(wn, lag = 3, type = "Ljung-Box")

Shortcoming of this function: it can be applied only lag by lag. To appear soon: package **outilST** developped by Aragon (2010).

Other R tools

- ► The function Lag included in **Hmisc** computes a lag vector:
 - > require(Hmisc)
 - > Lag(1:10, 2)
- ► The function diff and diffinv returns respectively the vectors Δy_t = y_{t+1} y_t and Δ⁻¹y_t:
 - > diff(cumsum(1:10))
 - > diffinv(cumsum(1:10))
- ► The function lowess may be used to smooth the time series:
 - > plot(wn.ts, main = "Simulated Random Walk", xlab = "time in year"
 - > lines(lowess(wn.ts), col = "blue", lty = "dashed")
- See also http://cran.r-project.org/doc/contrib/ Ricci-refcard-ts.pdf

Exploratory Data Analysis

Identification of ARIMA

AR simulated examples ARIMA simulated examples Other R tools

Case study

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Toulouse School of Economics

Thibault LAURENT

EDA 00000 0000 0

AR simulated examples

Consider the following AR(1) model :

$$y_t = -18 - 0.8y_{t-1} + z_t, \ t = 1, ..., 200$$

with $z_t \sim N(0, 1.5)$. Notice that $\mathbb{E}(Y) = -10$. How can we simulate this series and analyze it ?

Image: Image:

Simulation

- 1. Simulate the white noise z_t :
 - > set.seed(951)
 - > n2 = 250
 - > noise = rnorm(n2, 0, sqrt(1.5))
- 2. Apply the recurrence relation $y_t = -0.8 \times y_{t-1} + (z_t 18)$ by using the function filter with a initial value $y_0 = \mathbb{E}(Y) = -10$ (init=-10): > noise18 = noise - 18 > y.n = filter(noise18, c(-0.8), side = 1, method = "recursive", + init = -10)
- 3. Delete the beginning of the series:

```
> y.n = y.n[-c(1:50)]
```

Image: A match a ma

EDA 00000 0000 Identification of ARIMA

Case study

AR simulated examples

Representation of the series

> plot(y.n, type = "l", xlab = "time", main = "Simulated AR(1)")

Toulouse School of Economics

Thibault LAURENT

Analysis of the ACF/PACF graphic

The analysis of the ACF (decreasing exponentially) and the PACF (close to 0 for p > 1) strongly suggest an AR(1).

Thibault LAURENT

Fitting an AR(1)

We may use the function arima to fit an ARIMA(p,d,q).

```
> (y.fit = arima(y.n, order = c(1, 0, 0)))
```

```
Call:
arima(x = y.n, order = c(1, 0, 0))
```

Coefficients: ar1 intercept -0.7899 -10.0269 s.e. 0.0432 0.0497

sigma² estimated as 1.574: log likelihood = -329.65, aic = 665.29

Notice that the value associated to intercept is not the intercept, but the mean (see http:

//www.stat.pitt.edu/stoffer/tsa2/Rissues.htm#Issue1)

Diagnostic plots

The object created by arima contains several informations and may be used by the function tsdiag which plots different graphics for checking that the residuals are white noise.

> tsdiag(y.fit)

Toulouse School of Economics

Thibault LAURENT Time series with R


```
Forecast 10 ahead:
> y.fore = predict(y.fit, n.ahead = 10)
> U = y.fore$pred + 2 * y.fore$se
> L = y.fore$pred - 2 * y.fore$se
> miny = min(y.n, L)
> maxy = max(y.n, U)
> ts.plot(window(ts(y.n, 150, 200)), y.fore$pred, col = 1:2,
+ ylim = c(miny, maxy), main = "Forecast 10 ahead")
> lines(U, col = "blue", lty = "dashed")
> lines(L, col = "blue", lty = "dashed")
```


Thibault LAURENT

Time series with R

Case of an ARIMA(1,1,2)

Consider the following ARMA(1,2) model :

$$y_t = -0.9 - 0.8y_{t-1} + z_t - 0.3z_{t-1} + 0.6z_{t-2}, t = 1, ..., 200$$

with $z_t \sim N(0, 4)$. We can re-write it as:

$$y_t = -0.5 + \frac{1 - 0.3B + 0.6B^2}{1 + 0.8B} z_t, \ t = 1, ..., 200$$

The following model is an ARIMA(1,1,2):

$$\Delta y_t = -0.5 + \frac{1 - 0.3B + 0.6B^2}{1 + 0.8B} z_t$$
, $t = 1, ..., 200$

How can we simulate this series and analyze it ?

Thibault LAURENT

Time series with R

Toulouse School of Economics

• • • • • • • •

1. simulate an ARMA(1,2) with the function arima.sim:

```
> set.seed(121181)
```

> yd.n = -0.5 + arima.sim(n = 200, list(ar = -0.8, ma = c(-0.3,

(日)

ACF and PACF of the initial series

The analysis of the ACF (decreasing non exponentially) confirms the non stationarity of the series.

```
> op <- par(mfrow = c(3, 1))
> plot(y2.int, type = "l", xlab = "time", main = "Simulated ARIMA(1,1,1
> acf(y2.int, main = "", ylim = c(-1, 1))
> pacf(y2.int, main = "", ylim = c(-1, 1))
> par(op)
```


Thibault LAURENT

Toulouse School of Economics

ACF and PACF of the differenciated series

The analysis of the differenciated series suggests an ARMA (ACF and PACF decrease exponentially).

- > diff.y2.int <- diff(y2.int)</pre>
- > op <- par(mfrow = c(3, 1))
- > plot(diff.y2.int, type = "1", xlab = "time", main = "Differenciated s
- > acf(diff.y2.int, main = "", ylim = c(-1, 1))
- > pacf(diff.y2.int, main = "", ylim = c(-1, 1))

> par(op)

Toulouse School of Economics

Thibault LAURENT Time series with R

Identification of an ARMA(p,q)

- apply the methodology for selecting parameters in an OLS model such as "backward" or "forward", by using the function arima. The function t_stat in package **outilST** will give the p-values of each parameter.
- The MINIC (Minimum Information Criterion) method may be used to identify the parameters p and q (to appear soon: function armaselect in package outilST) which compares a specific criteria in several models.

MINIC method

armaselect of package outilST returns Schwartz' Bayesian Criterion (SBC) value for different models:

```
> armaselect(diff.y2.int, max.p = 15, max.q = 15)
```

```
        p
        q
        sbc

        [1,]
        1
        2
        268.9689

        [2,]
        2
        2
        270.8024

        [3,]
        1
        3
        271.5127

        [4,]
        1
        4
        274.8745

        [5,]
        5
        0
        274.8792
```

It gives the ARMA(1,2) as the best model...

Fitting an ARIMA(1,1,2)

```
We may use the function Arima included in package forecast to fit
an ARIMA(1,1,2) to the initial series.
> require(forecast)
This is forecast 2.04
> (y2.fit = Arima(y2.int, order = c(1, 1, 2), include.drift = TRUE))
Series: v2.int
ARIMA(1,1,2) with drift
Call: Arima(x = y2.int, order = c(1, 1, 2), include.drift = TRUE)
Coefficients:
                                                                                                                           ma1
                                                                                                                                                                               ma2
                                                                                                                                                                                                                             drift
                                                                 ar1
                                       -0.8175 -0.2345 0.4635 -0.4593
s.e. 0.0475 0.0719 0.0743 0.0891
 sigma<sup>2</sup> estimated as 3 473 \cdot \log (1 + 1) \log (1
```

Thibault LAURENT

The package **urca** contains two functions useful to detect a possible non stationarity in the series:

- The function ur.df computes the Augmented Dickey-Fuller test. The choice of test (option test='trend' or test='drift') may be suggested by the series itself...
- The function ur.kpss computes the Kwiatkowski test with the different options type='tau' or type='mu'.

Other R tools

Fit an ARMAX or SARIMA

- ► The option xreg in Arima may be used to fit an ARMAX. For example, to adjust the model $y_t = \beta_0 + \beta_1 x_t + u_t$, $u_t = \phi u_{t-1} + z_t$, t = 1...T: > temps = time(LakeHuron)
 - > mod1.lac = Arima(LakeHuron, order = c(1, 0, 0), xreg = temps,

```
method = "ML")
```

the option seasonal=list(order=c(P,D,Q),period=per) may be used to fit a SARIMA. For example:

```
> fitm = Arima(nott1, order = c(1, 0, 0), list(order = c(2,
+ 1, 0), period = 12))
> summary(fitm)
```

Exploratory Data Analysis

Identification of ARIMA

Case study

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ □臣 □ りんの

Thibault LAURENT

Time series with R

A case study

- Choose a series on http://fr.finance.yahoo.com/ and find the *Code*. Here, we choose the Danone stock price (Code=BP.NA)
- 2. Import the series by using function priceIts of package its

```
> require(its)
> danone = priceIts(instrument = "BN.PA", start = "2008-01-03",
+ end = "2010-07-31", quote = "Close")
> str(danone)
```

```
3. missing values ?
```

```
> manq = complete.cases(danone) == FALSE
```

Representation of the series

> plot(danone, main = "Danone quotation the last 2 years",

```
+ ylab = "in euros")
```

Danone quotation the last 2 years

In general, with a financial series, we are interested by the return $\frac{y_t - y_{t-1}}{y_{t-1}}$.

Thibault LAURENT Time series with R

Analysis of the returns

The function returns in package **fSeries** computes the returns and the function its creates an irregular time series:

> library(fSeries)

> y.ret <- its(returns(danone, percentage = TRUE), danone@dates)</pre>

Kurtosis and Skewness tests indicate a strong heteroscedasticity (high value of kurtosis) with more negative returns than positive returns (negative value of skewness).

- > require(fBasics)
- > dagoTest(y.ret)

Representation of the returns and their square

We notice at the end of 2008 a strong variation...

Returns of the Danone quotation

Square returns of the Danone quotation

Thibault LAURENT

Time series with R

Analysis of the ACF/PACF graph

We thus try to adjust an AR(2)

Toulouse School of Economics

Thibault LAURENT

Fit a first model

```
> (ret.fit = Arima(na.omit(y.ret@.Data), order = c(2, 0,
+ 0), include.mean = FALSE))
> t_stat(ret.fit)
> tsdiag(ret.fit)
```

This model seems acceptable but we must verify whether there is heteroscedasticity in the residuals.

Conditional heteroscedasticty test

The function ArchTest included in package **FinTS** computes a conditional heteroscedasticty test:

- > require(FinTS)
- > rr <- ret.fit\$residuals</pre>
- > ArchTest(rr, lag = 12)

As we observe heteroscedasticty, we try to fit a GARCH(1,1), with the function garchFit included in package **fGarch**:

> require(fGarch)

```
> res.garch <- garchFit(~garch(1, 1), data = rr, trace = FALSE,</pre>
```

- + na.action = na.pass)
- > summary(res.garch)

GARCH

To combine the AR(2) with the GARCH(1,1) applied to the residuals, we compute the following model:

- > res2.garch <- garchFit(~arma(2, 0) + garch(1, 1), data = na.omit(y.re</pre>
- + include.mean = FALSE, trace = FALSE, na.action = na.pass)
- > summary(res2.garch)

The model can finally be written as : $y_t = -0.83y_{t-1} - 0.88y_{t-2} + \epsilon_t$ with $\epsilon_t = \sigma_t z_t$ with $\sigma_t^2 = 0.07 + 0.1\epsilon_{t-1} + 0.88\sigma_{t-1}^2$

Prediction of a GARCH

```
> pred.zcond = predict(res2.garch, n.ahead = 30, trace = FALSE,
+ mse = "cond", plot = TRUE)
```


Thibault LAURENT

Time series with R