Frontier Analysis with R

Summer School on Mathematical Methods in Finance and Economy

Thibault LAURENT

Toulouse School of Economics

June 2010 (slides modified in August 2010)

Thibault LAURENT

Frontier Analysis with R

Toulouse School of Economics

Introduction

- A first simulated example
- Analysis of the real data

Toulouse School of Economics

Thibault LAURENT

The packages about frontier analysis

- **FEAR**: Frontier Efficiency Analysis with R
- Available at http://www.clemson.edu/economics/ faculty/wilson/Software/FEAR/fear.html
- install the package from local zip file
- Other packages: DEA (Data Envelopment Analysis) (no more available in August 2010), frontier (Stochastic Frontier Analysis)
- Soon on CRAN: package frontiles, exploratory frontier analysis and measures of efficiency.

Introduction

A first simulated example

Analysis of the real data

Toulouse School of Economics

Thibault LAURENT

Simulation with R

1. Factor variable

Random generation of a vector of size 100 following a binomial distribution with p = 0.2:

- > x <- rbinom(100, 1, 0.2)
- > plot(table(x), main = "frequency")

Other distributions: Poisson $\mathcal{P}(\lambda)$ (function rpois), etc.

2. Numeric variable

Random generation of a vector of size 100 following a gaussian distribution $\mathcal{N}(\mu = 1, \sigma = 1)$:

- > x <- rnorm(100, 1, 1)
- > hist(x, main = "")

Other distributions: Uniform $\mathcal{U}_{[a,b]}$ (function runif), etc.

Simulate the data (1)

See Simar-Zelenyuk (Journal of Applied Econometrics, 2007)

- one output y and one input x both of size n = 15
- The true frontier is defined by the function $f: x \to \sqrt{x}$
- For simulating the data:
 - 1. define the vector of input as $x \sim \mathcal{U}_{[0,1]}$
 - 2. define a vector $u \sim \mathcal{N}^+(\mu = 0.25, \sigma = 0.2)$
 - 3. the vector of input is defined as $y = \frac{\sqrt{x}}{1+u}$

Simulate the data (2)

The function set.seed allows us to keep the same simulated data

```
> require(tmvtnorm)
> ns = 15
> set.seed(121181)
> x = runif(ns, 0, 1)
> ybar = x^(1/2)
> set.seed(121181)
> u = rtmvnorm(n = ns, mean = c(0.25), sigma = c(0.2),
+ lower = c(0))
> y = ybar/(1 + u)
```

Toulouse School of Economics

Thibault LAURENT

Representation of the data

Representation of the simulated data:

```
> plot(y ~ x, type = "p",
+ col = "red", ylim = c(0,
+ 1))
```

Representation of the true frontier:

- > x.seq <- seq(0, 1, by = 0.01)
- > t.fr <- x.seq^(1/2)
- > lines(t.fr ~ x.seq, col = "blue")

Thibault LAURENT

Toulouse School of Economics

"True frontier" efficiency measurement

Output oriented measure:

$$\lambda(x,y) = \frac{y}{f(x)}$$

Input oriented measure:

$$\theta(x,y) = \frac{f^{-1}(y)}{x}$$

Shepard measure:

$$\delta(x,y) = \frac{1}{\theta(x,y)}$$

- > lambda = y/sqrt(x)
- > theta = y^2/x
- > delta = 1/theta

Thibault LAURENT

Reproducible research

```
> require(xtable)
> tab1 <- data.frame(lambda, theta, delta)</pre>
```

```
> matable <- xtable(tab1[1:5, ], digits = 3, align = "l|ccc",</pre>
```

```
+ caption = "True Frontier Efficiency measures")
```

```
> print(matable, hline.after = c(0), file = "V.tex",
```

```
+ size = "tiny")
```

	lambda	theta	delta
1	0.648	0.419	2.385
2	0.792	0.627	1.595
3	0.958	0.917	1.090
4	0.770	0.594	1.685
5	0.753	0.567	1.765

Table: True Frontier Efficiency measures

Thibault LAURENT

Frontier Analysis with R

Toulouse School of Economics

Stochastic frontier (1)

- 1. adjust a linear model with function 1m and keep the coefficient β of the regression line: $y = \alpha + \beta x$
- 2. find the firm k which maximises $(y_i \hat{y}_i)$, i = 1, ..., n. Notice that the firm k can be found and detected manually with function identify
- 3. calculate α' such that the regression line $y = \alpha' + \beta x$ goes through firm k and represent the stochastic frontier

< □ > < 同 > < 回 >

Stochastic frontier (2)

- Use of the function identify
- > plot(x, y, col = "red")
- > abline(beta.lm, col = "blue")
- > identify(x, y)

- 1. OLS model
- > res.lm <- lm(y ~ x)
- > beta.lm <- coefficients(res.lm)</pre>

Toulouse School of Economics

Thibault LAURENT

Stochastic frontier (3)

Toulouse School of Economics

Thibault LAURENT

Stochastic frontier efficiency measurement

- Let us define $f_1: x \to \alpha' + \beta x$
- > f1 = function(x) alpha2 + beta.lm[2] * x

 $f_1^{-1}: x \to \frac{x-lpha'}{eta}$

- > f1.inv = function(x) (x alpha2)/beta.lm[2]
 - Output oriented measure:

$$\lambda(x,y) = \frac{y}{f_1(x)}$$

Input oriented measure:

$$\theta(x,y) = \frac{f_1^{-1}(y)}{x}$$

Shepard measure:

$$\delta(x, y) = \frac{1}{\theta(x, y)}$$

> lambda1 = y/f1(x)
> theta1 = f1.inv(y)/x
> delta1 = 1/theta1

< □ > < 同 > < 回 >

DEA - FDH representation

Manual detection of the firms located on the two frontiers with the identify() function

```
> plot(y ~ x)
> identify(x, y)
> lines(x[c(2, 9, 3, 4)],
     y[c(2, 9, 3, 4)])
+
9, 9, 8, 8, 3, 3,
+
 4, 4)], y[c(2, 2,
+
 12, 12, 9, 9, 8,
+
     8, 3, 3, 4], 1ty = 2)
+
 legend("topleft", legend = c("DEA",
>
     "FDH"), lty = 1:2)
+
```


Analysis of the real data

DEA - FDH efficiency frontiers/measures

Let consider firm number 5

- On which part of the frontier would this firm be located if it were efficient in the ouput direction ? in the input direction ?
- Using this position on the estimated frontiers, calculate the measures of efficiency

Toulouse School of Economics

Thibault LAURENT

Naive Bootstrap

Repeat B times (with the loop for)

- sampling among the 15 observations with function sample
- 2. calculate new estimators of the frontiers
- calculate new measures of efficiency
- 4. stock the results

Calculate Biais, Variance, Confidence interval

Toulouse School of Economics

Thibault LAURENT

Introduction

A first simulated example

Analysis of the real data

Exploratory Data Analysis

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q @

Toulouse School of Economics

Thibault LAURENT

The data sets

- one output and three input observed on 62 farms in Spain
 - > spain <- read.table("spain.txt", header = TRUE)</pre>
 - > summary(spain)
- Fore more details, see the section 5.2. of Aragon-Daouia-Thomas (Annales d'économie et de statistique, 2006).

Scatter plot (1)

```
> op <- par()
> layout(matrix(c(2, 1, 0, 3), 2, 2, byrow = T),
      c(1, 6), c(4, 1))
+
> par(mar = c(1, 1, 5, 2))
> plot(y ~ x1, data = spain, pch = 16, col = "darkblue")
> abline(lm(y ~ x1, data = spain), col = "red")
> title(main = "Scatter Plot")
> rug(spain$x1, side = 1, col = "royalblue")
> rug(spain$y, side = 2, col = "royalblue")
> par(mar = c(1, 2, 5, 1))
> boxplot(spain$y, axes = F, col = "lightblue")
> title(ylab = "output", line = 0)
> par(mar = c(5, 1, 1, 2))
> boxplot(spain$x1, horizontal = T, axes = F, col = "lightblue")
> title(xlab = "input", line = 1)
> par(op)
```

メロト メロト メヨト メ

Scatter plot (2)

Toulouse School of Economics

Thibault LAURENT

Scatter plot 3-d

- > require(scatterplot3d)
 > with(main sectors)
- > with(spain, scatterplot3d(x1,
- + x2, y))

Toulouse School of Economics

Thibault LAURENT

Structure of the data in FEAR

- the *p* inputs are included in a $p \times n$ matrix
 - > input <- t(cbind(spain\$x1, spain\$x2, spain\$x3))</pre>
- the q outputs are included in a $q \times n$ matrix
 - > output <- t(matrix(spain\$y))</pre>

Toulouse School of Economics

Image: A matrix

Thibault LAURENT

Measures of efficiency

- function dea computes DEA Efficiency estimates
- function fdh computes FDH efficiency estimates
- function orderm computes m-order efficiency estimates (m = 25 by default)
- function hquan computes non parametric conditional and unconditional α-quantile estimates (α = 0.95 by default)

NB: argument ORIENTATION indicates the direction in which efficiency is to be evaluated (equal to 1 for input direction, 2 for output direction, 3 for hyperbolic)

Measures of efficiency (2)

> require(FEAR)

FEAR (Frontier Efficiency Analysis with R) 1.13 installed Copyright Paul W. Wilson 2010 See file LICENSE for license and citation information

- > res.dea <- dea(input, output, ORIENTATION = 2)</pre>
- > res.fdh <- fdh(input, output, ORIENTATION = 2)</pre>
- > res.orderm <- orderm(input, output, ORIENTATION = 2)</pre>
- > res.hquan <- hquan(input, output, ORIENTATION = 2)</pre>
- > res.measures <- rbind(res.dea, res.fdh[1,], res.orderm[1,],</pre>
- + res.hquan)
- > row.names(res.measures) <- c("dea", "fdh", "orderm", "al-quan")</pre>

You can use the functions order or sort to compute the ranks of the firms depending on the efficiency measure.

Image: A match a ma

Comparison of the measures of efficiency

Thibault LAURENT

Bootstrap

Function boot.sw98 implements the bootstrap method of Simar and Wilson (1998) for estimating confidence intervals for Shepard (1970) input and output distance functions. NB: may take time

> boot.sw98(input, output)

Image: A matrix and a matrix

Thibault LAURENT