
Parallel computing with Parallel computing with RR (session 1) (session 1)

M2 Statistics and EconometricsM2 Statistics and Econometrics

Thibault LaurentThibault Laurent

Toulouse School of Economics, CNRSToulouse School of Economics, CNRS

Last update: 2023-09-28Last update: 2023-09-28

1 / 541 / 54

http://www.thibault.laurent.free.fr/

Table of contentsTable of contents
1. Principle of parallel computing1. Principle of parallel computing

2. How coding a program in parallel?2. How coding a program in parallel?

3. Balancing the distribution of tasks3. Balancing the distribution of tasks

4. Reproduccing the results: choice of the seed4. Reproduccing the results: choice of the seed

2 / 542 / 54

Before startingBefore starting

3 / 543 / 54

Packages and software versions
Install the following packages:

install.packages(c("microbenchmark", "rpart", "snow", "snowFT", "tid

 dependencies = TRUE)

And load them:

require("parallel")

require("snow")

require("snowFT")

require("VGAM")

This document has been compiled under this version of R

R.Version()$version.string

[1] "R version 4.3.1 (2023-06-16)"

This session was inspired by this tutorial.

4 / 54

https://rawgit.com/PPgp/useR2017public/master/tutorial.html

1. Principle of parallel computing1. Principle of parallel computing

5 / 545 / 54

Principle of parallel computing
Parallel computing is particularly adapted for this kind of algorithm:

1. Create a function myfunc() that is sampling from the original data with a
given seed and returns the value of an estimator:

myfunc <- function(data, i){

 set.seed(i)

 data_boot <- data[sampling(1:n, replace = T),]

 ...

return(estimator)

}

2. Repeat times myfunc() with a different seed for each simulation:

for (iteration in 1:N) {

 result[iteration] <- myfunc(...)

}

3. Summarize the results obtained:

process(result,...)

N

N

6 / 54

Sequential to parallel
Sequential: execute iteration , then iteration , etc. sequentially
Parallel: execute the iterations at the same time in parallel

Remark: in practice, the number of availabale cores is lower than . In that
case, we split the iterations into groups of size equal to the number of cores
available and execute sequentially the sub-iterations inside the cores

1 2
N

N

7 / 54

Example of algorithm: Random forest
Repeat regression or classification trees with respect to the samples:N N

8 / 54

How many cores are available on my
machine?
What is difference between CPU and cores ?

Function detectCores() from parallel package permits to detect the number of
cores and threads

library("parallel")

detectCores(logical = FALSE) # number of cores

detectCores() # number of logical cores or threads

9 / 54

� Training
Exercise 1

How many cores do you have on your machine ?

How many threads do you have on your machine ?

Which are the methods that you have seen in the Big Data course that
could be used in parallel computing ?

10 / 54

What is a master program?
Definition: The master program specifies the division of tasks and
summarizes the parallelized results.

Example: in the previous algorithm, we have process to replicate. Let
suppose that and the number of cores available is equal to 4.
The master program must indicate how to divide tasks across the cores.
For example:

The core 1 will execute iterations 1, 5, 9, ..., 93, 97
The core 2 will execute iterations 2, 6, 10, ..., 94, 98
The core 3 will execute iterations 3, 7, 11, ..., 95, 99
The core 4 will execute iterations 4, 8, 12, ..., 96, 100

Once the tasks computed, the master program has to summarize the
results obtained.

N

N = 100

11 / 54

Summary of a master program

Many packages permit to do parallel computing with R. We will focus on
parallel and snow.

12 / 54

What does the function set.seed() do?
When sampling, the need is the possible desire for reproducible results.
set.seed() function in R is used to reproduce results i.e. it produces the same
sample again and again. It takes as input argument an integer which is then
used in the algorithm to generate randomness. The function is followed by a
simulation function like sample(), rnorm(), runif(), rbinom(), etc. For example, if
we draw 5 numbers among 49 and then simulate a white noise:

set.seed(200907)

loto <- sample(1:49, 5)

white_noise <- rnorm(5)

If you repeat again the same syntax (starting by set.seed() with the same
integer) followed by the same simulation functions, the two simulated vectors
loto and white_noise will be identical. It can be useful to reproduce results
which use simulations.

More informations in this video.

13 / 54

https://www.youtube.com/watch?v=zAYzAZwufKI

Be carreful with set.seed()!
In the algorithm of bootstrap, each simulation should be different from
another one. Hence, do not use set.seed() with a fix number inside the loop
for. In the following example, we compute the "bootstrap" mean of the
variable "Sepal.Length", but the seed is fixed to the same number. Hence, the
sample drawn is the same for any simulation.

B <- 10

res_mean <- numeric(B)

for (b in 1:B) {

 set.seed(123)

 samp <- sample(1:nrow(iris), replace = T)

 res_mean[b] <- mean(iris[samp, "Sepal.Length"])

}

res_mean

[1] 5.774 5.774 5.774 5.774 5.774 5.774 5.774 5.774 5.774 5.774

Solution:

a) execute set.seed() before the loop
b) possibility to replace 123 by b inside the for loop

14 / 54

� Training
Exercise 2.1

Compare the two solutions a) and b) proposed at previous page

Exercise 2.2

The aim is to use a bootstrap algorithm and compute the "bootstrap" mean of
my_vec. We fix the number of replication to .

set.seed(200907)

my_vec <- rnorm(100000)

Implement the program in a sequential way; represent the histogram of
the "bootstrap" values, the "bootstrap" mean and the true value.

Describe the algorithm for parallel computing with respect to the number
of cores available on your machine.

B = 1000

15 / 54

2. How coding a program in parallel?2. How coding a program in parallel?

a. Examplea. Example

16 / 5416 / 54

Bagging algorithm
We split iris data into two data sets: a training data set called train_sets of size
120 and a test data set called test_sets with 30 observations (10 observations
for each level of Species).

set.seed(5656)

id_pred <- c(sample(which(iris$Species == "setosa"), 10, replace =

 sample(which(iris$Species == "versicolor"), 10, replace

 sample(which(iris$Species == "virginica"), 10, replace

test_sets <- iris[id_pred,]

train_sets <- iris[-id_pred,]

Goal: we want to predict Species variable on the test data set by using a
bagging algorithm.

We remind that the bagging algorithm consists in:

1. bootstrapping training samples (here),
2. doing a classification or regression tree on each "bootstrapped" sample
3. predicting times on the test samples.
4. summarizing on the results to get the final predictions

B B = 100

B

B

17 / 54

Classi�cation tree on a Bootstrap sample
We consider the function my_tree() which:

1. bootstraps the train data set,
2. computes a classification tree (argument formula gives the model to be

estimated)
3. returns the predictions on the test data set.

The first argument of my_tree() is the value of the seed to be used before
sampling the data.

my_tree <- function(b, train, test, formula) {

 set.seed(b)

bootstrap the observations

 train_sets_bootstrap <- train[sample(1:nrow(train), replace = T),

classification tree on the bootstrap sample

 res_rf <- rpart::rpart(formula, data = train_sets_bootstrap)

prediction

 res <- predict(res_rf, newdata = test, type = "class")

return(as.character(res))

}

Example:

my_tree(123, train = train_sets, test = test_sets, formula = Species18 / 54

Starting from the non // version: for loop
(1)
In the non parallel case, we can use either a for loop solution either the
function sapply(). With the for loop solution, we use the argument b in the for
loop as the first argument of the function:

B <- 100

my_pred <- matrix("0", B, nrow(test_sets))

for (b in 1:B) {

 my_pred[b,] <- my_tree(b, train = train_sets, test = test_sets, fo

}

Then, for each observation in the test sample, we summarize the predictions
obtained. For doing this, we compute a function which returns the mode of a
vector of character.

my_mode <- function(x) {

 ux <- unique(x)

 ux[which.max(tabulate(match(x, ux)))]

}

19 / 54

Starting from the non // version: for loop
(2)
For example, for the first observation in the test data set :

my_mode(my_pred[1,])

[1] "versicolor"

We can do it for each observation by using function apply():

my_final_pred <- apply(my_pred, 2, my_mode)

Finally, we can compare with the observed data:

table(test_sets$Species, my_final_pred)

my_final_pred

setosa versicolor virginica

setosa 10 0 0

versicolor 0 9 1

virginica 0 1 9 20 / 54

Starting from the non // version: sapply()
In the 1st argument, we give a vector of size corresponding to the values of
b to be evaluated by the function my_tree(). Here, we choose integer values
from 1 to .

B <- 100

res_non_par <- sapply(1:B, FUN = my_tree,

 train = train_sets, test = test_sets, formula = Species ~

Remark: the optional argument train, test and formula appear in the
function sapply() after the argument FUN.

Finally, we summarize the bagging predictions:

final prediction

my_final_pred <- apply(res_non_par, 1, my_mode)

table(test_sets$Species, my_final_pred)

B

B

21 / 54

Comparing computational time with R
The function system.time() can be used, but it is noisy due to the CPU which is
always running different applications. Repeating the same instruction will
return two different computational times:

system.time(sapply(1:B, FUN = my_tree, train = train_sets, test = te

system.time(sapply(1:B, FUN = my_tree, train = train_sets, test = te

The principle of function microbenchmark() is to repeat the same instructions
several times and doing statistics on the computational time results:

library(microbenchmark)

mbm_1 <- microbenchmark(

 `for loop` = {for (b in 1:B) {

 my_pred[b,] <- my_tree(b, train = train_sets, test = test_sets

 }},

 `sapply` = sapply(1:B, FUN = my_tree, train = train_sets, test = t

 times = 10L)

Remark: for loop and sapply() give similar results in computational time

22 / 54

library(tidyverse)

ggplot(mbm_1) +

 aes(x = time, y = expr) +

 geom_boxplot()

Summary statistics on the computational
time
When you print the previous object, you get directly some statistics:

print(mbm_1)

Unit: milliseconds

 expr min lq mean median uq max neval

 for loop 264.4870 275.6725 281.2750 278.8226 282.6041 372.9308 100

 sapply 267.5311 273.3300 277.9667 276.1686 280.2284 368.4190 100

To plot a parallel boxplot, one can use the ggplot2 syntax :

23 / 54

Parallel case
With parallel package:

we first allocate the number of cores to be used with makeCluster().
Then, we use function clusterApply(). Excepted the 1st argument which
indicates which cluster to be used, the syntax is exactly the same than
sapply().
To finish, it is necessary to free the cores with stopCluster():

P <- 4

cl <- makeCluster(P)

mbm_2 <- microbenchmark::microbenchmark(

 `parallel computing` = {res_par <- parallel::clusterApply(cl, 1:B

 train = train_sets, test = test_sets, formula = Species ~ .)}

 times = 10L

)

stopCluster(cl)

Remark: the objects train_sets, test_sets, and formula are send in the cores
job by job.

24 / 54

Summarizing the results
The results is a list object. Before computing the predictions, we need first to
transform the list in a more convenient format. This can be done with a for
loop.

Loop 1: aggregate the results on the B simulation

my_matrix <- matrix("0", 100, 30)

for (b in 1:100)

 my_matrix[b,] <- as.character(res_par[[b]])

Once it has been done, we can summarize the results of the replications to
get the predictions.

Loop 2: predict by the most observed levels

resultats <- data.frame(id = id_pred)

resultats$bagging <- apply(my_matrix, 2, function(x) names(which.max

B

25 / 54

What's happening during the process?
User can check than the cores are running. On Windows, click on
"Gestionnaire des tâches/performance". On Linux, use command top in the
terminal.

26 / 54

Recommendations
Launch your parallel code once it has been tested and was successful with
a single core.

If you get an error message, do not forget to use stopCluster() to free cores.

If you kill you master session, it could happen that the allocated cores are
still running. Moreover, stopCluster() is probably not sufficient. Click on
"Gestionnaire des tâches/processus" and right-click on each of the open R
processes and kill them.

If you need to load big objects, these objects will be duplicated in each
core. In other terms, the total RAM needed corresponds to

, where is the number of cores. If the total
amount of RAM is of the capacity, parallel computing is probably
not optimal.

P × RAMneeded for 1 core P

100%

27 / 54

How many cores should I use?
The time saving is not linear depending on the number of cores. Indeed,
there are some flows between the master program and the cores that are
costly in computation time (typically, the transfer of data).

The time saving is decreasing but there could be an asymptote. In that
case, it is not necessary to use all the cores.

It could happen that the computational time with several cores is higher
than with only one core. In that case, it probably means that the program
is poorly implemented

28 / 54

Computational time
With our example, parallel computing is not efficient... This is because there
are many flows of data between the master program and the cores.

We are going to see how we could improve it?

29 / 54

2. How coding a program in parallel?2. How coding a program in parallel?

b. Improving my parallel codeb. Improving my parallel code

30 / 5430 / 54

How to evaluate expressions across the
cores?
Doing parallel computing on cores is equivalent to opening new R
session. Hence, there are no objects known neither packages loaded in the
cores. For example, let consider a variation of my_tree()

my_tree_2 <- function(b) {

 set.seed(b)

 train_sets_bootstrap <- train_sets[sample(1:nrow(train_sets), repl

 res_rf <- rpart(formula, data = train_sets_bootstrap)

 res <- predict(res_rf, newdata = test_sets, type = "class")

return(res)

}

If we send this function like this in a parallel way, there are two issues:

package rpart must be loaded for using rpart() function
the three objects train_sets, test_sets and formula are unknown in the
cores (even if they have beed defined in the main session).

P P

31 / 54

Evaluate objects and packages in each core
It is possible to evaluate objects and packages in each core before executing
my_tree_2(). For doing this, we use function clusterEvalQ() which contains
some expressions to be evaluated in each core.

cl <- makeCluster(P)

clusterEvalQ(cl, {

library("rpart")

 set.seed(5656)

 id_pred <- c(sample(1:50, 10, replace = F),

 sample(51:100, 10, replace = F),

 sample(101:150, 10, replace = F))

 test_sets <- iris[id_pred,]

 train_sets <- iris[-id_pred,]

 formula <- Species ~ .

})

mbm_3 <- microbenchmark::microbenchmark(

 `parallel computing 2` = {res_par <- clusterApply(cl, 1:100, fun =

 times = 100L

)

stopCluster(cl)

32 / 54

Load objects and packages in each core
In the previous example, we have send expressions to be evaluated in each
core. It is also possible to export directly objects from the main session to the
different cores thanks to the function clusterExport().

cl <- makeCluster(P)

clusterExport(cl, c("test_sets", "train_sets"))

clusterEvalQ(cl, {

library("rpart")

 formula <- Species ~ .

 })

mbm_4 <- microbenchmark::microbenchmark(

 `parallel computing 3` = {clusterApply(cl, 1:100, fun = my_tree_2

 times = 100L

)

stopCluster(cl)

33 / 54

Comparaison of the computational times
In this example, it is interesting to use parallel computing, if and only if we
load the data in the cores (thanks to clusterExport() and clusterEvalQ).
Otherwise, transferring flows of data job by job across the cores, is more costly
than using only one core.

34 / 54

Other packages for parallel computing
snowFT: takes into account the issue of random seed (we present an
example at the end of this session)

foreach and doParallel (see vignette for more information): interesting
because based on for loop syntax.

require("doParallel")

registerDoParallel(cores = P) # allocate the cores

getDoParWorkers() # print the number of cores

system.time(

 res_par_foreach <- foreach(i = r_values)

 %dopar% myfun(i, mean = 5, sd = 10)

)

free the cores

registerDoParallel(cores = 1)

print the result

unlist(res_par_foreach)

doMPI: for a MPI achitecture

35 / 54

https://cran.r-project.org/web/packages/doParallel/vignettes/gettingstartedParallel.pdf

� Training
Exercise 3.1

The aim of this exercise is to implement the Random Forest (RF) algorithm by
using parallel computing on the iris data seen previously.

Remark: RF is similar to Bagging. The only difference is that at each
replication , the model on the train set, select randomly a number of
explanatory variables. Here we choose .

Compare the predictions between bagging and RF

b m

m = 2

36 / 54

3. Balancing the distribution of tasks3. Balancing the distribution of tasks

37 / 5437 / 54

Problematic
When we split the tasks between cores, it could happen that some tasks take
more time than others. For example, let consider the function rnmean() which
returns the average mean of a Gaussian sample of size where r is the input
argument.

rnmean <- function(r, mean = 0, sd = 1) {

 mean(rnorm(r, mean = mean, sd = sd))

}

If we apply rnmean() on heterogeneous values of , there is an imbalance
between tasks with respect to the values of . We create here heterogeneous
values for r:

N <- 80

set.seed(50)

(r.seq <- sample(ceiling(exp(seq(10, 14, length = N))), N))

[1] 36547 291350 215019 622671 31396 47075 52092 60637 508

[10] 356757 136324 86430 34742 375286 483404 105834 40441 117

[19] 74250 802059 226187 100609 655010 184718 29846 843715 194

[28] 887535 25640 67099 28373 150852 982120 263291 724815 158

[37] 933630 1143229 78107 49520 143404 22027 322399 306482 44

r

r

r

38 / 54

Applications on 4 cores
If we parallelize the tasks between 4 cores with respect to the vector r.seq :

cl <- makeCluster(4)

my_res <- clusterApply(cl, r.seq, fun = rnmean)

stopCluster(cl)

The division of tasks will be done like this:

core 1 will make the computations for the following values of r.seq:
1021451 (1st position), 867586 (5th position), 88235 (9th position), etc.

core 2 will make the computations for the following values of r.seq: 49828
(2nd position), 25933 (6th position), 183956 (10th position), etc.

core 3 will make the computations for the following values of r.seq:
254990 (3rd position), 39005 (7th position), 112719 (11th position), etc.

core 4 will make the computations for the following values of r.seq:
1202605 (4th position), 74944 (8th position), 576832 (12th position), etc.

39 / 54

Computational time per core
We can plot the computational time job by job (green line) and core by core. It
can be done with function snow.time() from package snow. Red line
corresponds to transfer data and blue line to a time break. Here, we can see
that jobs must start at the same time in the cores.

cl <- makeCluster(P)

ctime <- snow::snow.time(snow::clusterApply(cl, r.seq, fun = rnmean

plot(ctime, title = "Usage with clusterApply")

stopCluster(cl)

40 / 54

Use clusterApplyLB()
The use of clusterApplyLB() instead of clusterApply() permits to resolve this
issue. The execution of the parallelized functions start independently between
cores.

cl <- makeCluster(P)

ctimeLB <- snow.time(clusterApplyLB(cl, r.seq, fun = rnmean))

plot(ctimeLB, title = "Usage with clusterApplyLB")

stopCluster(cl)

41 / 54

Number of jobs > number of cores
In our previous examples, one job corresponds to the execution of a particular
function my_fun(). Let suppose that we have 4 cores and we want to execute
16 times my_fun. When we use the following instruction, we actually do
transfer of informations (figure on the left).

cl <- makeCluster(4)

clusterApply(cl, 1:16, fun = my_fun)

stopCluster(cl)

The idea is to reducce the number of flows by vectorizing the function
my_fun()

cl <- makeCluster(4)

clusterApply(cl, list(`job_1` = 1:4, `job_2` = 5:8, `job_3` = 9:12,

stopCluster(cl)

16

42 / 54

Applications
In the previous example, there are 40 jobs which means 40 flows of
information between master core and other cores. The program could be
implemented differently and call only 4 jobs, each job containing the results of
10 simulations.

For doing that, the function rnmean() must be adapted for being able to treat
several values of r, by using function sapply() for instance. The 1st argument is
now a vector :

rnmean_vect <- function(vec_r, mean = 0, sd = 1) {

 sapply(vec_r,

function(x) mean(rnorm(x, mean = mean, sd = sd)))

}

Then the master program must also be adapted; indeed, it may send in each
core a vector of values to be evaluated. For doing this, we prepare a list of
vectors:

r.seq_list <- list(r.seq[1:20], r.seq[21:40], r.seq[41:60], r.seq[61

43 / 54

Best solution
Finally, we call parallel computing. It is not necessary to use clusterApplyLB()
instead of clusterApply() because the number of jobs is equal to the number of
cores. Finally, we observe the best computational time.

library("snow")

cl <- makeCluster(P)

ctime <- snow.time(clusterApply(cl, r.seq_list, fun = rnmean_vect))

plot(ctime, title = "Usage with clusterApply")

stopCluster(cl)

44 / 54

When // computing is not a good solution?
Let consider the following "big" object:

n <- 10000000

big_file <- data.frame(chiffre = 1:n, lettre = paste0("caract", 1:n

 date = sample(seq.Date(as.Date("2017-10-01"), by = "day", len

object.size(big_file)

The aim is to compute a new binary variable with 1 if chiffre is an even and 0
otherwise.

Solution 1: create a vector of boolean with %% and ifelse()

mbm_1 <- microbenchmark::microbenchmark({

 big_file$new <- ifelse(big_file$chiffre %% 2 == 0, 1, 0)}, times =

Solution 2: create a vector of boolean with %% and as.numeric()

mbm_2 <- microbenchmark::microbenchmark({

 big_file$new <- as.numeric(big_file$chiffre %% 2 == 0)}, times = 1

45 / 54

Bad example of // computing
Solution 3: use // computing with foreach(). We define the function to be
parallelize

compare <- function(x)

 x %% 2 == 0

Then we foreach() (only on the 1000 first thousand values because it is too
much costly otherwise)

require("doParallel")

P <- 4

registerDoParallel(cores = P)

system.time(

 res <- foreach(i = 1:1000) %dopar%

 compare(big_file$chiffre[i])

)

Remark: here 1 job corresponds to the evaluation of 1 value of the vector. As
we have seen previously, it is not efficient because there are too much flows of
information.

46 / 54

Good example of // computing
Instead of sending 1 job per core, we evaluate several jobs. In the following
program, we evaluate in the 1st core the values from 1 to 2500000, in the 2nd
core the values from 2500001 to 5000000, etc.:

require("doParallel")

registerDoParallel(cores = P)

mbm_3 <- microbenchmark::microbenchmark({

res <- foreach(i = 1:4) %dopar%

 compare(big_file[(1 + 2500000 * (i - 1)):(2500000 * i), "chiffre"]

}, times = 10L

)

47 / 54

Solution 4: Use C++
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

IntegerVector compare_cpp(IntegerVector x) {

int n = x.size();

IntegerVector res(n);

for(int i = 0; i < n; i++) {

if(x(i) % 2 == 0) {

 res(i) = 1;

 } else {

 res(i) = 0;

 }

 }

return res;

}

require("Rcpp")

mbm_4 <- microbenchmark::microbenchmark(

 big_file$new <- compare_cpp(big_file$chiffre),

 times = 10L)

48 / 54

Comparison of computational time

In this example, using C++ is the best solution which is often the case when a
program uses a huge number of loop.

Parallel computing does not really improve the computational time compared
to the vectorial solution, because the flows of information between master
program and cores are important.

49 / 54

� Training
Exercise 4.1

The aim of this exercise is to improve the Random Forest (RF) algorithm
programmed previously by limiting the number of jobs. Here, we impose that
the number of jobs equals the number of cores. It requires to vectorize the
function my_tree(). Compare the computational time with the previous
version of the algorithm.

50 / 54

4. Reproduccing the results: choice of the4. Reproduccing the results: choice of the
seedseed

51 / 5451 / 54

How to de�ne the seed
The function set.seed() must be called inside the function to be paralleled. In
parallel computing, we have to choose the values of the seed such that each
job has an unique value. In the following function, we define two arguments
which can be modified in a job: x the seed and r the size of the vector to be
simulated

rnmean <- function(x, r, mean = 0, sd = 1) {

 set.seed(x)

return(mean(rnorm(r, mean = mean, sd = sd)))

}

That is why we use hereafter clusterMap() (like mapply()) which permits to
parallel a function with two arguments:

r_values <- rep(c(10, 1000, 100000, 10000000), each = 10)

cl <- makeCluster(P)

Good example:

mbm_1 <- microbenchmark::microbenchmark(

 clusterMap(cl, fun = rnmean, x = 1:100, r = r_values, mean = 0, sd

Bad example:

clusterMap(cl, fun = rnmean, x= rep(1:25, times = 4), r = r_values,

stopCluster(cl)
52 / 54

Package snowFT (1)
Function performParallel() from package snowFT permits to determine the
different seeds in the replicates with respect to the seed given in the master
program. In this case, it is not necessary to include set.seed() inside the
function to be parallelize. However the unique seed is given in argument seed
of function performParallel().

rnmean <- function(r, mean = 0, sd = 1) {

return(mean(rnorm(r, mean = mean, sd = sd)))

}

library("snowFT")

seed <- 1

mbm_2 <- microbenchmark::microbenchmark(

 performParallel(P, r.seq, fun = rnmean, seed = seed), times = 10L

)

This package seems to give similar results in a computational point of view

53 / 54

More informations about snowFT
When using package snowFT, the objects to export and packages to load in the
cores are given in the arguments initexpr and export. For example:

myfun_pareto <- function(r) {

return(mean(rpareto(r, scale = scale, shape = shape)))

}

seed <- 1

scale <- 1

shape <- 10

r_values <- rep(c(10, 1000, 100000, 10000000), each = 10)

res <- performParallel(P, r.seq, fun = myfun_pareto,

 seed = seed,

 initexpr = require("VGAM"),

 export = c("scale", "shape"))

54 / 54

