
Advanced Programming with Advanced Programming with RR (session 2) (session 2)

M2 Statistics and EconometricsM2 Statistics and Econometrics

Thibault LaurentThibault Laurent

Toulouse School of Economics, CNRSToulouse School of Economics, CNRS

Last update: 2023-09-27Last update: 2023-09-27

1 / 721 / 72

http://www.thibault.laurent.free.fr/

Table of contentsTable of contents
1. Style guide1. Style guide

2. Reminders2. Reminders

3. Fix the size of the vectors3. Fix the size of the vectors

4. Vectorized function4. Vectorized function

5. Integrate C++ code5. Integrate C++ code

6. Avoiding loops (if possible)6. Avoiding loops (if possible)

7. Recommendations inside a function7. Recommendations inside a function

8. Debugging a function8. Debugging a function

9. Short introduction to S3 method9. Short introduction to S3 method

2 / 722 / 72

Before startingBefore starting

3 / 723 / 72

Packages and software versions
Install the following packages:

install.packages(c("ggplot2", "kableExtra", "Matrix", "microbenchma

And load them:

require("Matrix") # for presenting S4 class of object
require("microbenchmark") # comparing computational time
require("pryr") # access memory, internal R codes on github
require("Rcpp") # integrate C++ code
require("reticulate") # interface with python

This document has been compiled under this version of R

R.Version()$version.string

[1] "R version 4.3.1 (2023-06-16)"

4 / 72

1. Style guide1. Style guide

5 / 725 / 72

Style guide for R code (1)
There is no PEP 8 guide style as for Python
(https://www.python.org/dev/peps/pep-0008/)

However, one can follow Hadley Wickham recommendations in his R
advanced book.

An alternative is the Google R Style Guide

Among these commitment, we can cite:

Use an appropriate file naming like

source("lagrangian_computation.R")
load("final_data_basis.RData")

Use an appropriate R objects naming like

reg_tree
rf_reg

6 / 72

https://www.python.org/dev/peps/pep-0008/
http://adv-r.had.co.nz/Style.html
https://google.github.io/styleguide/Rguide.xml

Style guide for R code (2)
Other recommendations among many others

Use spaces between operators, argument function, etc. :

1 + 2 + 3 + 4 == 4 * (4 + 1) / 2
a <- c(5, NA, 4, 3)
mean(a, na.rm = TRUE)

With exceptions for operators : and ::

1:10
stats::lm

Try to limit the number of characters per line to 80 (it can actually
depend on the type of document: report, presentation, etc) and do not
hesitate to break line
Qualify namespaces for all external functions

ozone.rf <- randomForest::randomForest(Ozone ~ ., data = airqual
 mtry = 3, importance = TRUE, na.action = na.omit)

7 / 72

Style guide for R code (3)
Other recommendations among many others

Affectation operator: use <- instead of =

a <- 1

Use spaces before/after {, }, (,) and indent inside the for, while

x <- runif(10)
mean_sq <- 0
for (i in seq_along(x)) {
 mean_sq <- mean_sq + x[i] ^ 2
}

Same thing inside condition if/else:

if (a == 0) {
 log(x)
} else {
 (x ^ a - 1) / a
} 8 / 72

� Training: Exercise 2.1
Re-write the following code properly by using the recommendations seen
in the section

my_mean=function(x)
{
verification

if(!is.numeric(x))
stop("x must be a numeric vector")

initialization

n= length(x)
res =0
for(k in 1:n)
{
 res= res+x[k]
}
return res

return(res/ n)
}

9 / 72

2. Reminders2. Reminders

10 / 7210 / 72

if/else syntax
The principle of if/else is the following:

if (<condition(s)>) {
 <instruction 1>
} else {
 <instruction 2>
}

For example, if a variable is numeric we want to compute the mean but if it
is a character, we want to compute the mode. The algorithm is

if is numeric do

else if is character do

end for

x

x

 x̄

x

 Mode(x)

11 / 72

Application
x <- c("F", "F", "M", "F")
if (is.numeric(x)) {
 cat("mean =", mean(x))
} else {

if (is.character(x)) {
 cat("mode =", max(table(x)))
 }
}

mode = 3

x <- c(10, 11, 12, 15, 13, 12)
if (is.numeric(x)) {
 cat("mean =", mean(x))
} else {

if (is.character(x)) {
 cat("mode =", max(table(x)))
 }
}

mean = 12.16667 12 / 72

Instruction if must be followed by TRUE ou
FALSE
Even if we can test several conditions inside the instruction if, the result must
be TRUE or FALSE.

Example: in the previous example, in the second situation, we allow x to be a
factor. We check two conditions, but the result is still a scalar TRUE or FALSE

x <- factor(c("m", "m", "f", "f"))
if (is.character(x) | is.factor(x)) {
 table(x)
}

x
f m
2 2

Recall: | is the OR operator and & is the AND operator

13 / 72

Changing all the elements of a vector
It is possible to use a "vectorized" version of if/else. For example, we change
the sign of the negative values of a vector of numeric.

x <- c(1, 3.4, 2, -3, -2)

Option 1:

x[x < 0] <- - x[x < 0]

Option 2: use ifelse() function

x <- ifelse(x < 0, -x, x)

14 / 72

Nested loop
We want to compute the income tax with respect to the value of salary:

€0 — €15,000 23%
€15,000 — €28,000 27%
if > €28,000 38%

Application:

x <- 44000
if (x < 15000) {
 x * 0.23
} else {

if (x >= 15000 & x < 28000) {
15000 * 0.23 + (x - 15000) * 0.27

 } else {
if (x >= 28000 & x < 55000) {

15000 * 0.23 + (28000 - 15000) * 0.27 + (x - 28000) * 0.38
 }
 }
}

[1] 13040 15 / 72

Why creating its own function?
In the previous example, instead of repeating the same code for each variable,
the idea is to create a function and use it every time we want to apply it. The
syntax is :

my_tax <- function(x) {
verification

 stopifnot(is.numeric(x))
instructions

if (x < 15000) {
 tax <- x * 0.23
 } else {

if (x >= 15000 & x < 28000) {
 tax <- 15000 * 0.23 + (x - 15000) * 0.27
 } else {

if (x >= 28000 & x < 55000) {
 tax <- 15000 * 0.23 + (28000 - 15000) * 0.27 + (x - 2800
 }
 }
 }

return(tax) # results
}

16 / 72

Application
income <- seq(0, 50000, 1000)
plot(income, sapply(income, my_tax), type = "l", ylab = "tax")

Remark: our function my_tax() is not vectorized which explains why we use
sapply() 17 / 72

Global v.s. local variable
Global variables are declared outside any function, and they can be accessed
(used) on any function in the program. Local variables are declared inside a
function, and can be used only inside that function. It is possible to have local
variables with the same name in different functions.

Example: here beta_0 and beta_1 are used inside f() but have not been
defined inside, so there are choosen as global. x has been defined as global
variable, but as it is also defined inside the function, the local is used.

f <- function(x) {
return(beta_0 + beta_1 * x)

}
x <- 1
beta_0 <- 1
beta_1 <- 2
f(c(0, 1, 2))

[1] 1 3 5

18 / 72

for, while loop
We consider the vector . To compute the average mean of the
vector, the formula is

with . The computation must be done step by

step:

Step 0: Initialize
Step 1:
Step 2:
Step 3:

Step :

(x1, … , xn)

x̄ = Sn/n

Sn =
n

∑
i=1

xi = x1 + … + xn

S = 0
S = S + x1
S = S + x2(= x1 + x2)
S = S + x3(= x1 + x2 + x3)

⋮
n S = S + xn(= x0 + … + xn)

19 / 72

Algorithm to compute the mean of a vector
This can be written like this:

initialisation:

for from 1 to , do

 S = S + x[i]

end for

finalization: At the end, we divide

On R, it can be done like this:

S <- 0
for (i in 1:n) {
 S <- S + x[i]
}
S <- S / n

S = 0

i n

S/n

20 / 72

Applications
Example 1

x <- c(5, 10, 3, 3, 6, 9, 1, 2, 3, 1, 11, 12)
for (i in 1:length(x)) {
 cat("Value", i, "equals", x[i], "; ")
}

Value 1 equals 5 ; Value 2 equals 10 ; Value 3 equals 3 ; Value 4 equals

Example 2

my_mean <- 0
for (i in 1:length(x)) {
 my_mean <- my_mean + x[i]
}
my_mean / length(x)

[1] 5.5

Remark: many functions are already vectorized (like function mean()) which
allows to avoid to re-program these functions.

21 / 72

break and next reserved words
break and next are two reserved words. It allow user to make verification at
each step of the loop with an if instruction. If break is called during a for
loop, it will stop the loop at step . next will skip step . Using break is
equivalent to use while instruction. For example, if a vector has missing
values, we skip the missing values.

x <- c(5, 10, 3, NA, 6, 9, 1, 2, 3, NA, 11, 12)
S <- 0
for (i in 1:length(x)) {

if (is.na(x[i])) {
 cat("step", i, "not executed ~ ")

next

 }
 S <- S + x[i]
 cat("step", i, "executed ~ ")
}

step 1 executed ~ step 2 executed ~ step 3 executed ~ step 4 not executed

S

[1] 62

i

i i

22 / 72

Double Loop for
To browse the elements of a matrix, we need to nest two loops: one loop for
the row, one loop for the column.

for (i in 1:3) {
for (j in 1:4) {

 cat("i =", i, "and j =", j, ifelse(j == 4, "\n", "; "))
 }
}

i = 1 and j = 1 ; i = 1 and j = 2 ; i = 1 and j = 3 ; i = 1 and j = 4
i = 2 and j = 1 ; i = 2 and j = 2 ; i = 2 and j = 3 ; i = 2 and j = 4
i = 3 and j = 1 ; i = 3 and j = 2 ; i = 3 and j = 3 ; i = 3 and j = 4

Application: compute the sum of the elements of the following matrix:

x_mat <- matrix(x, nrow = 4, ncol = 3)
S <- 0
for (i in 1:nrow(x_mat)) {

for (j in 1:ncol(x_mat)) {
 S <- S + x_mat[i, j]
 }
} 23 / 72

while loop
Example: we want to compute the sum all the elements of a vector of size
and stop the computation if there is a missing value NA. For doing this, we
need to browse the elements of the vector . At each iteration, we check that
x[i] is not a missing value and if not, we update the sum and increase by 1,
etc.

This can be written like this:

initialization: and

while and x[i] NA do

 S = S + x[i]

 i = i + 1

end while

finalization: return

n

x

i

i = 1 S = 0

i ≤ n ≠

i

24 / 72

while loop
Application: we consider the following vector

x <- c(5, 10, 3, 3, NA, 9, 1, 2, 3, 1, 11, 12)

i <- 1
S <- 0
while (i <= length(x) && !is.na(x[i])) {
 S <- S + x[i]
 i <- i + 1
}

25 / 72

� Training: Exercise 2.2.a
We consider the following simulated vector of size :

set.seed(1)
x <- rnorm(10000)

The algorithm to find the maximum is:

initialisation:

for from 2 to , do

 if (x[i] > m) do

 m = x[i]

 end if

end for

Program in R this algorithm

10000

m = x[1]

i n

26 / 72

� Training: Exercise 2.2.b
Create a function that allows to compute the maximum for any vector of
numeric. It must take into account the possibility that there exists some
missing values.

To test your function, execute the following codes:

x1 <- c(1000, 10, 6, NA)
x2 <- c(NA, 1000, 10, 6)
x3 <- c(NA, NA, 1000, 10, 6)
my_max(x1)

[1] 1000

my_max(x2)

[1] 1000

my_max(x3)

[1] 1000
27 / 72

3. Fix the size of the vectors3. Fix the size of the vectors

28 / 7228 / 72

trunc_rnorm.1 <- function(n, a)
 x <- numeric(0)
 i <- 1
while (i <= n) {

 r <- rnorm(1)
if (r > - abs(a) & r < abs(a)

 x <- c(x, r)
 i <- i + 1
 }
 }
 x
}

trunc_rnorm.2 <- function(n, a)
 x <- numeric(n)
 i <- 1
while (i <= n) {

 r <- rnorm(1)
if (r > - abs(a) & r < abs(a)

 x[i] <- r
 i <- i + 1
 }
 }
 x
}

Fix the size of the vectors
Objective: create a function trunc_rnorm() which takes as input argument an
integer n and a positive scalar a. It returns a vector of size n where each
elements follows a gaussian and is between ;N (0, 1) [−a, a]

29 / 72

Comparing results (1)
By using system.time(), we should repeat several times the function because
the computation time presents some variance:

B <- 100
my_time <- data.frame(method_1 = numeric(B), method_2 = numeric(B))
for (k in 1:100) {
 my_time[k, "method_1"] <- system.time(trunc_rnorm.1(n = 10000, a =
 my_time[k, "method_2"] <- system.time(trunc_rnorm.2(n = 10000, a =
}

Then we use pivot_longer() (see previous chapter) to transform the data into
long format, which allows to plot a boxplot

my_time <- tidyr::pivot_longer(my_time, cols = 1:2, names_to = "meth
library(ggplot2)
p <- ggplot(my_time, aes(x = method, y = value)) +
 geom_boxplot(outlier.colour = "black", outlier.shape = 16,
 outlier.size = 2, notch = FALSE)

30 / 72

Comparing results (2)
To measure computational time, function microbenchmark() from package
microbenchmark repeats several time the same code and returns summary
statistics:

mbm <- microbenchmark::microbenchmark(
 trunc_rnorm.1(n = 10000, a = 2),
 trunc_rnorm.2(n = 10000, a = 2), times = 100L)

Function autoplot() from package ggplot2 allows to plot the results of
microbenchmark

ggplot2::autoplot(mbm)

More information about how measuring computational time here 31 / 72

https://www.alexejgossmann.com/benchmarking_r/

Why is it longer?
R stores the object somewhere in memory. If the size of the vector is fixed, it is
possible to modify this object without changing its memory location. Function
address() from package pryr allows to give the memory location of the object

x <- numeric(10)
for (i in 1:10) {
 x[i] <- ifelse(rnorm(1) > 0, 1, 0)
 print(pryr::address(x))
}

However, if the size of the vector changes, it will modify the location. It is like
if it was creating a new object at each step.

for (i in 11:20) {
 x[i] <- ifelse(rnorm(1) > 0, 1, 0)
 print(pryr::address(x))
}

32 / 72

� Training: exercise 2.3
Compare the computational time between the three expressions and
represent the result in a plot

n <- 10 ^
expression 1

x <- numeric(n)
for (k in 1:n)
 x[k] <- (5 == sample(1:10, 1))
mean(x)
expression 2

x <- NULL
for (k in 1:n)
 x <- c(x, (5 == sample(1:10, 1)))
mean(x)
expression 3

x <- 0
for (k in 1:n)
 x <- x + (5 == sample(1:10, 1))
x/n

33 / 72

4. Vectorized function4. Vectorized function

34 / 7234 / 72

Use preprogrammed vectorized function
Objective: compute the sum of the elements of a simulated vector vec

vec <- rnorm(10000000)

Solution 1: we program the function

my_sum <- function(x) {
 res <- 0

for (k in seq_along(x))
 res <- res + x[k]

return(res)
}

Solution 2: we use function sum()

ggplot2::autoplot(
 microbenchmark::microbenchmark(
 my_sum(vec),
 sum(vec), times = 10L))

35 / 72

Why such a di�erence?
Most of the R base functions which are vectorized are calling C, C++, or
FORTRAN program to carry out operations.

In a compiled language (which is the case with C, C++, or FORTRAN), the
target machine directly translates the program.

In an interpreted language (which is the case of R), the source code is not
directly translated by the target machine. Instead, a different program, aka the
interpreter, reads and executes the code.

It explains why the computational time is better when using internal functions
which are calling C, C++, or FORTRAN.

36 / 72

� Training
Exercise 2.4

Program a function my_sd() which computes the standard deviation of a
vector of numeric without calling function sum() neither mean(). Moreover,
you have to use only one loop. Compare the computational time with function
sd()

37 / 72

5. Integrate C++ code5. Integrate C++ code

38 / 7238 / 72

How can I integrate a C++ code
If you program your C++ function in a separated file, you can lauch your
file in R with sourceCpp() from Rcpp package

download.file(url = "http://www.thibault.laurent.free.fr/cours/R_ava
Rcpp::sourceCpp("sumcplusplus.cpp")

If you program your C++ in a dedicated chunk in Markdown, the building
shared library is automatically done

Call the C++ function from R

sum_rcpp(vec)

[1] 4164.232

39 / 72

Overview of a C++ �le
#include <Rcpp.h>

using namespace Rcpp;

// [[Rcpp::export]]

double sum_rcpp(NumericVector x) {
double res = 0;
int n = x.size();

for(int i = 0; i < n; i++) {
 res = res + x(i);
 }

return res;
}

40 / 72

Main di�erences between R and C++
languages

the type of the objects must be defined (input and output arguments,
internal objects, even argument in a loop !) and it can not be changed.
For example, if you define object res as an integer, the result will be
necessarily an integer even if the x vector is a numeric

Rcpp also attempts to provide many of the base R functions within the
C++ scope

a line of code ends by a ;

use = operaror to create a new object

syntax in for is a little bit different

in vector use (,) instead of [,]; index in vector starts from 0

More informations: Hadley Wickham's book, package author doc, slides from
Duke university

i

41 / 72

http://adv-r.had.co.nz/Rcpp.html
http://dirk.eddelbuettel.com/code/rcpp/Rcpp-sugar.pdf
http://www2.stat.duke.edu/~cr173/Sta790_Sp19/slides/Lec08.html#1
http://www2.stat.duke.edu/~cr173/Sta790_Sp19/slides/Lec08.html#1

Calling Python code from RStudio
Create a chunk by specifying the language used:

```{python}
import pandas
flights = pandas.read_csv("http://www.thibault.laurent.free.fr/cours
flights = flights[flights['Dest'] == "TPA"]
flights = flights[['UniqueCarrier', 'DepDelay', 'ArrDelay']]
flights = flights.dropna()
```

Possibility to interact between R and the Python object created:

```{r}
library(ggplot2)
ggplot(py$flights, aes(UniqueCarrier, ArrDelay)) + geom_point() + ge

```

42 / 72

� Training
Exercise 2.5

Program a function my_sd_cpp() in C++ which computes the standard
deviation of a vector of numeric. Compare the computational time with
function sd().

Remark: in C++, one can use pow(a, b) to compute .ab

43 / 72

6. Avoiding loops (if possible)6. Avoiding loops (if possible)

44 / 7244 / 72

Function l-s-t-apply()
for array, use apply()

apply(iris[, 1:4], 2, mean)

Function lapply() is used on a list object. It applies the function FUN to
each element of the list :

my_list <- list(a = 1:3, b = "a string")
lapply(my_list, nchar)

Function sapply() uses lapply() but returns an array/matrix when it is
possible.

sapply(mtcars, mean)

Function tapply() executes a function on a numeric variable with respect
to the levels of a qualitative variable.

tapply(iris$Sepal.Length, iris$Species, sum)

45 / 72

Function mapply()
mapply() is a multivariate version of sapply(). For example, we have a list of
two elements: the first element contains a vector of prices in dollar, the second
element a vector of prices in pounds. We also have the rate change
dollar/euros and pounds/euros in a vector of 2 elements.

price <- list(achat_1 = c(10, 11, 12, 90), achat_2 = c(10, 11, 12, 9
taux <- c(taux_1 = 0.85, taux_2 = 1.12)

We would like to compute the sum of each element in euros knowing the
change. For doing that, we first program a function which allows to do this
computation for one element x of the first list and for one element y of the
second list.

sum_convert <- function(x, y) sum(x) * y

Then, we use mapply() where the first argument is the multivariate function,
the following arguments are price and taux

mapply(FUN = sum_convert, price, taux)

46 / 72

Create your own function in argument FUN
Functions l-s-t-apply() are particularly useful when argument FUN is an own
created function. For example, if we need to compute summary statistics for
several variables of a data.frame, we create first the function that we need to
apply to each variable and then sapply() on it.

sum_stat <- function(x) c(min = min(x), max = max(x), mean = mean(x
 med = median(x), sd = sd(x))
kableExtra::kbl(t(round(sapply(mtcars[, 1:4], sum_stat), 3)))

min max mean med sd

mpg 10.4 33.9 20.091 19.2 6.027

cyl 4.0 8.0 6.188 6.0 1.786

disp 71.1 472.0 230.722 196.3 123.939

hp 52.0 335.0 146.688 123.0 68.563

Remark: to include properly a table in a Markdown document, we use
function kbl() from package kableExtra

47 / 72

colSums(), rowSums(), colMeans(),
rowMeans()
When applying function apply() with FUN = sum or FUN = mean, it is
recommended to use instead one of the function colSums(), rowSums(),
colMeans(), rowMeans() which are calling internal codes. A consequence is
that the computational time is better.

x <- matrix(runif(10e6), nc = 5)
ggplot2::autoplot(
 microbenchmark::microbenchmark(
 apply(x, 2, mean),
 my_apply_2(x, mean),
 colMeans(x),
 times = 10L))

48 / 72

Function replicate()
Objective: we want to simulate 5 samples each of size 10, distributed under a

 and store it a list.

Solution 1: use a for loop instruction

res <- vector("list", 5)
for (k in 1:5)
 res[[k]] <- runif(10)

Solution 2: use sapply() and include any vector of size 5 instead of a list as
first argument (a vector can be considered as a list, in that case each
element is a scalar)

res <- sapply(integer(5), function(x) runif(10))

Solution 3: use function replicate()

res <- replicate(5, runif(10))

Remark: solution 3 is equivalent to solution 2 because replicate() actually calls
function sapply() by creating a vector of size

U[0,1]

n
49 / 72

� Training
Exercise 2.6

Simulate a list xs of 5 samples each of size 10 distributed under a
(use if possible function replicate()).

Simulate a vector ws of size 5 distributed under a binomial (use
function rbinom()).

compute the sum of each element of xs and multiply it by the element of
ws (use for loop and mapply() and compare computational time).

U[0,1]

B(10, 0.5)

50 / 72

7. Recommendations inside a function7. Recommendations inside a function

51 / 7251 / 72

Create several functions (1)
Do not hesitate to create small functions in your codes and call them
inside your main function

These functions should be local if it is only used once or global if there are
called several times.

Use a dot for private function

Example: compute a non parametric kernel where is one of the three
options.

biweight

triweight

gaussian

K K

K(x) = (1 − ()2)21()2≤1
15
16

x

h
x

h

K(x) = (1 − ()2)31()2≤1
35
32

x

h
x

h

K(x) = exp(−0.5()2))1
√2π

x

h

52 / 72

Create several functions (2)
We first create small global functions:

.indicator <- function(x, h) ifelse((x/h) ^ 2 <= 1, 1, 0)
biweight <- function(x, h) 15/16 * (1 - (x/h) ^ 2) ^ 2 * .indicator
triweight <- function(x, h) 35/32 * (1 - (x/h) ^ 2) ^ 3 * .indicato
gaussian <- function(x, h) 1 / sqrt(2 * pi) * exp(-0.5 * (x/h) ^ 2)

Then we create the main function which calls others

f_noyau <- function(x, h, type = "bi") {
if (type == "bi") {

 biweight(x, h)
 } else {

if (type == "tri") {
 triweight(x, h)
 } else {
 gaussian(x, h)
 }
 }
}

53 / 72

Use switch() to avoid too much if/else
When there are too many nested conditions if/else with respect to an input
parameter, you can use switch() function:

f_noyau.2 <- function(x, h, type = "bi") {
switch(type,

 bi = biweight(x, h),
 tri = triweight(x, h),
 gauss = gaussian(x, h),

"type should be among bi/tri/gauss")
}

Application:

x <- seq(-1, 1, 0.01)
plot(x, f_noyau.2(x, 0.3, type = "bi"), type = "l", ylab = "", ylim
lines(x, f_noyau.2(x, 0.3, type = "tri"), lty = 2)
lines(x, f_noyau.2(x, 0.3, type = "gauss"), lty = 3)

54 / 72

Function stopifnot()
When a function checks for validity of user-input arguments, function
stopifnot() can be useful. It can contain several verifications:

stopifnot(1 < 2, length(1:2) == 2, pi < 2, cos(pi) > 3)

When it is used inside a function it stops it as soon as a condition is not
verified. It is usually used at the top of the function:

try_stopifnot <- function (x, y, n) {
 stopifnot(length(x) == length(y),
 is.integer(n))
 (x + y) ^ n
}
try_stopifnot(2, 5, 2L)

55 / 72

Call options from another function
When a function f() calls another function f1() which has a lot of input
argument, it is not necessary to declare all the input arguments in f(). Use
instead ... among the input arguments of f() and f1(). It allows to use in f() all
parameters known by f1().

Example: plot_reg() calls function plot() which has many input arguments...

plot_reg <- function(x, y, np = TRUE, ...) {
 plot(y ~ x, ...)
 abline(lm(y ~ x), col = "blue")

if (np) {
 np.reg <- loess(y ~ x)
 x.seq <- seq(min(x), max(x), length.out = 25)
 lines(x.seq, predict(np.reg, x.seq), col = "red")
 }
}

Applications: we can use any arguments known by plot()

plot_reg(cars$speed, cars$dist, pch = 16, col = "pink",
 xlab = "variable explicative", ylab = "variable à explique

56 / 72

Other recommandations
Do not keep un-used arguments (it costs time to evaluate)

f <- function(a = 5, b = 4, d = 3, e = 1)
 (a + b)^2

It is possible to use function as input argument (like apply()):

randomise <- function(FUN) FUN(runif(1e3))
randomise(FUN = mean)
randomise(FUN = sum)

It is possible to use function as output argument:

f_power <- function(exponent)
function(x) x^exponent

f_power(2)(1:5)
f_power(3)(1:5)

57 / 72

� Training
Exercise 2.7

Write a function hist_extrm() which has three input arguments:

an integer n,
an integer B,
... which corresponds to the optional arguments of hist().

This function will make the following job:

Repeat B times :

simulate a random vector x of size n
checks if yes or no any value is upper to 1.96

The function plots the histogram of the extreme values and return the
percentage of simulation where at least one extreme value appears.

N (0, 1)

58 / 72

8. Debugging a function8. Debugging a function

59 / 7259 / 72

Debugg your function
Distinguish "error message" and "warning message"

Most of the time, the error message helps to understand what is wrong

sum(c("a", "b"))

Use traceback() after an error message due to a call of a function

f_noyau.2(seq(-2, 2, by = 0.1), h = "n")
traceback()

Remark: it is easier to traceback when a function calls small functions

Use debugonce() for executing a function step by step

ex_bug.2 <- function(x) {
 x <- log(x)
 f_noyau.2(x, h = "n")
}
debugonce(ex_bug.2)
ex_bug.2(-5) 60 / 72

Function try()
If you are conscious that your code contains error and you do not want the
function stops, use function try():

f_error.1 <- function(x) {
try(x <- log(x))

 x
}
f_error.1("10")
f_error.1(-1)

Remark: this is what require() is doing when it calls library()

61 / 72

9. Find the code source of a function9. Find the code source of a function

62 / 7262 / 72

How can I get the code source of a R
function? (1)

Solution 1 : try to print the name of the function in your console

sapply

function (X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
{
FUN <- match.fun(FUN)
answer <- lapply(X = X, FUN = FUN, ...)
if (USE.NAMES && is.character(X) && is.null(names(answer)))
names(answer) <- X
if (!isFALSE(simplify))
simplify2array(answer, higher = (simplify == "array"))
else answer
}
<bytecode: 0x55ef26aec1b8>
<environment: namespace:base>

63 / 72

How can I get the code source of a R
function? (2)
Solution 2: the function belongs to the class S3 (there is a call to UseMethod).

summary

It means that the function can be applied to different class of objects. To print
them, use methods() function:

methods("summary")

To get the codes, there are two options:

if there is no asterisk, print the full name of the function:

summary.lm

if there is a asterisk, use function getAnywhere()

getAnywhere("summary.ecdf") 64 / 72

How can I get the code source of a R
function? (3)
Solution 3: the function calls internal program (there is a call to .Primitive() or
.Internal())

sum

Use the function show_c_source() from package pryr to get the source code
from GitHub (need an account):

pryr::show_c_source(.Internal(mean(x)))

Solution 4: the function calls C code (there is a call to .Call())

qnorm

In your explorer, print: site:https://svn.r-project.org/R/trunk/src qnorm

65 / 72

https://svn.r-project.org/R/trunk/src

How can I get the code source of a R
function? (4)
Solution 5: the function applies to an object of class S4. An object belongs to S4
if it calls @ to access to its aruguments.

require("Matrix")
m <- Matrix(rbinom(100, 1, 0.1), 10, 10)
str(m)

To obtain all the functions which can be applied on a S4 object, use
showMethods():

showMethods(class = "Matrix")

To get the code of one particular function, use getMethod()

getMethod("dim", "Matrix")

66 / 72

9. Short introduction to S3 method9. Short introduction to S3 method

67 / 7267 / 72

S3 method (1)
Objective: we want to create a function which computes the area of square, a
rectangle or a circle.

We need to define a class of object for each geometry.

a square is defined by

a rectangle is defined by and

a circle is defined by

a

a b

R

68 / 72

S3 method (2)
We create for each geometry an object which contains a value which allows to
caracterize them:

squ <- 3
rec <- c(5, 6)
cir <- sqrt(10)

At this step, squ, rec and circ are simple vectors and we can only apply on
them functions for vectors. Now, we define them as new classes of object with
function class().

class(squ) <- "carre"
class(rec) <- "rectangle"
class(cir) <- "cercle"

69 / 72

S3 method (3)
We would like to create a function area() which computes the good formula.
We could do :

area <- function(x) {
switch(class(x),

 carre = x ^ 2,
 rectangle = x[1] * x[2],
 cercle = pi * x ^ 2,

"class should be among carre/rec/cercle")
}

The problem is that if we want to add a new class of object (like triangle), we
should modify area(). That is why in S3 method, we create a method (here
compute the area of a geometry that we call getArea) and then associate
functions which refers to this method.

70 / 72

S3 method (4)
To create a method, we create a function getArea which calls UseMethod() like
this:

getArea <- function(obj)
 UseMethod("getArea", obj)

Usually, we associate a first function which allows to treat the case where an
object is unknown.

getArea.default <- function(obj) {
stop("Méthode getArea non définie pour ce type d'objet")

}

At this step, as we did not associate getArea to any classes of object, getArea()
will produce an error message:

getArea(cir)

71 / 72

S3 method (5)
We now associate one function for each class. The function must start with the
name of the method (getArea), then a dot, then the name of the class.

getArea.cercle <- function(obj) {
 pi * obj[1] ^ 2
}
getArea.rectangle <- function(obj) {
 obj[1] * obj[2]
}
getArea.carre <- function(obj) {
 obj[1]^2
}

We can now use getArea() on each object and it will use the corresponding
method with respect to the class of object:

getArea(cir)
getArea(rec)
getArea(squ)

72 / 72

