
Data Management with Data Management with RR (session 1) (session 1)

M2 Statistics and EconometricsM2 Statistics and Econometrics

Thibault LaurentThibault Laurent

Toulouse School of Economics, CNRSToulouse School of Economics, CNRS

Last update: 2023-09-13Last update: 2023-09-13

1 / 1041 / 104

http://www.thibault.laurent.free.fr/

Table of contentsTable of contents

1. General informations1. General informations

2. Basic data manipulation2. Basic data manipulation

3. Importing data3. Importing data

4. Data cleaning4. Data cleaning

2 / 1042 / 104

1. General informations1. General informations

3 / 1043 / 104

Packages needed in this session
install.packages(c(

"foreign", "jsonlite", "readr", "readxl", "sas7bdat",
"XML", # import data
"reticulate", # use Python
"data.table", "ff", # big data
"Matrix", # sparse matrix
"classInt", "glue", "stringr", "wordcloud", # character treatment
"gplots", # plotting data
"tidyverse", "DSR", # Data Scientists toolkits
"Amelia", "DMwR", "missForest", "naniar", # missing values treatem
"sp", # spatial data object
"zoo") # Time series analysis

)
devtools::install_github("hadley/emo")
devtools::install_github("edwindj/ffbase", subdir = "pkg")
py_install("pandas")

4 / 104

What is R?
R is a software dedicated to statistical and scientific computing using its
own language. Actually, it is maintained by the R Core Team. It is
multiplatform (Linux, Mac OS, Windows), free (included in GNU project)
and can be downloaded from CRAN website.

🎥 How to install R?

It can be coupled with C, C++, Fortran (many base functions are coded in
one of this language) and Python.

It allows to realize both data management and statistical analysis (data
visualization, machine learning, text mining, time-series analysis, spatial
econometric, etc.).

It includes around 30 base packages and a huge number of other packages
which can be downloaded from CRAN or GitHub. To get the number of
available packages on CRAN, we can do:

nrow(available.packages())

[1] 19859

5 / 104

https://www.r-project.org/contributors.html
https://cran.r-project.org/
http://127.0.0.1:5081/Videos/installing.webm

R for economist?
Unlike Eviews, Gauss, SAS, SPSS, Stata, etc. R is free.

It can be used for:

data management,
data visualization,
data analysis,
programming new methods.

Many packages are dedicated to econometrics: https://cran.r-
project.org/web/views/Econometrics.html (many of them are related to
time series analysis).

It includes also many tools for optimization (see for instance this
document).

Free alternatives to R: Python (common for data management and
machine learning on Big Data), Julia (common for speed programming).

6 / 104

https://cran.r-project.org/web/views/Econometrics.html
https://www.is.uni-freiburg.de/resources/computational-economics/5_OptimizationR.pdf

Why using RStudio?
RStudio (https://www.rstudio.com/) allows to use a code editor
multiplatform (alternatives to RStudio: Spyder, Tinn-R). It has direct access
to:

the R console,
the figures,
the list of installed packages,
the list objects

🎥 Presentation of RStudio

RStudio desktop is free. The Professional versions permit facilities to
ODBC data connectors and servor management. It is easily possible to :

access to Markdown for creating reports/presentations and making
reproducible results (alternative: jupyter notebook). 🎥 Presentation
of R Markdown

create interactive web applications with Shiny.

execute Python or C++ code from the module.

7 / 104

https://www.rstudio.com/
http://127.0.0.1:5081/Videos/rstudio.webm
http://127.0.0.1:5081/Videos/markdown.webm

Basics operations
The > symbol in the console means that R is waiting some instructions to be
executed. It could be some mathematical operations like addition, subtraction,
multiplication, division, etc. For example:

(10 + 12 + 8.5) / 3

Remark: when R returns a scalar (which is actually a vector of size 1) the [1] at
the beginning of a line, corresponds to the position of the first value of the
printed line. If a line is starting with the + symbol, it means that an instruction
has been executed but it is not complete. For example:

> 12 *
+

The function c() allows to collect different values in a vector. To get the help of
a function, use help() or ? symbol. For example:

c(10, 12, 8.5)
?c
help(c)

8 / 104

What is an object?
We can do object oriented programming in R. In fact, everything in R is an
object. An object is a data structure having some attributes and methods
which act on its attributes.

To create an object in R, we use the following syntax (note that the <- operator
can be replaced by =):

name_object <- a_data_structure

For example we store in object my_vec a vector of numeric values:

my_vec <- c(10, 12, 8.5)

my_vec is now stored in the RAM. We can now apply many R functions which
take as argument a vector of numeric. For example:

mean(my_vec)

[1] 10.16667

9 / 104

Some tips when creating a new object
Some names can not be used for creating a new object.

there are some reserved words in R which can not be used for creating a
new object. To know them, just print

?Reserved

the name of an object can not start with a numeric value:

1a <- 5

Remark: the previous instruction causes an error message. An error breaks
the execution of the current instructions.

Moreover, usually we do not use the name of an existing function for creating
an object. To know if a function already exists, just print the name in the
console. If there is no message error, it means that the function exists

c
mean

10 / 104

Some tips when assigning a new object
Usually, we assign a value to an object in 1 line of code. However, it is possible
to:

create two objects in 1 line of code. We use ; operator between the two
assignments

a <- 5; b <- a - 1

create one object in 2 lines of code; usually, we use the line break after a
punctuation symbol:

d <- c(5, 15, 15, 14, 13, 12, 12, 12,
10, 10, 5, 40, 40, 25, 20, 10)

To print an R object, we can directly print the name of the object in the console
or use the print() function:

print(d)
d

11 / 104

Save the objects created during a session
To print the names of the objects that we have created, we use function ls() or
objects(). To remove one particular object (we do this when we create
temporary variable), we can use function rm():

ls()
rm(a)
objects()

Before leaving a session, we can save the objects created with save() function:

save(list = ls(), file = "session_1.RData")

The format used to save object with R is ".RData". It can contain any R object
(vectors, matrices, data.frame, etc). Here, "session_1.RData" has been created
in the working directory. To print the working directory use function getwd():

getwd()

12 / 104

Load .RData files
To load a ".RData" file with R, we simply use the function load():

load(file = "session_1.RData")

If the file "session_1.RData" is not located in the working directory, there are
two options to load it:

1. change the working directory with setwd() function. For example:

setwd("C:/Documents/my_path/to_the_file")

2. indicate the full name of the path:

load("C:\\Documents\\my_path\\to_the_file\\session_1.RData")

Remark: In R the "\" character is a special character. That is why we need to
use two backslashes operator for being interpreted as a backslash:

cat("Break line: \n To print backslash : \\ \n")

13 / 104

👩‍🎓 Training: exercice 1.1
To answer the exercise, try to use a R markdown document.

Create the object my_vec which contains a vector of numeric values: 28,
29, 35, 75, 40, 52, 23, 25, 10, 50.

Compute the mean, min, max and standard deviation of my_vec by using
the functions mean(), min(), max()

Compute the variance of my_vec by using only the function sum(), mean(),
length() (which gives the size of a vector). We remind that the variance of

 is where is the mean.

Compare it with the result obtained by var() function

Create object my_vec_st which substracts the mean and divide by the
standard deviation:

Print the working directory (WD) and save objects my_vec and my_vec_st
in a file "exo1.RData"

x1, . . . , xn ∑(xi − x̄)21
n

x̄

14 / 104

👩‍🎓 Training: exercice 1.2
What is the difference between library() and require() ?

Why these two syntaxes are working ?

require("stringr")
require(stringr)

Use the operator :: to use the function str_to_title() included in the package
stringr without calling library() or require().

15 / 104

2. Basic data manipulation2. Basic data manipulation

a. Vectorsa. Vectors

16 / 10416 / 104

Vectors: Create, access and modify
Vector is a basic data structure in R. It contains elements of the same type like
double, integer, logical or character. It can be created with the c() function:

a.numeric <- c(0.36, 64, 0.56, 0.44)
a.integer <- c(1L, 0L, 3L, 1L)
a.logical <- c(T, F, T, F)

It can also be initialized and then filled 1 by 1 or group by:

a.character <- character(4)
a.character[1] <- "France"
a.character[c(2, 4)] <- c("Belgium", "England")
a.character[-c(1:2, 4)] <- "Croatia"

Vectors are object with optional attributes like names:

names(a.numeric) <- a.character
a.numeric["France"]

17 / 104

Vectors: data types coercion
If a character string is present in a vector, everything else in the vector will be
converted to character strings. The other coercing rule is: if a vector only has
logicals and numbers, then logicals will be converted to numbers; TRUE
values become 1, and FALSE values become 0.

c(TRUE, 1, FALSE, pi)

Strings dominates numeric and logical. Numeric dominates logical:

c(TRUE, 1, FALSE, pi, "a_string")

🤔 In other languages, we would obtain an error message. R is automatically
executing some stuffs that we can not see; it takes time and it explains why R
is considered as slow compared to compiled languages.

18 / 104

Vectors: Comparison
The operators of comparison are: x == y, x != y, x > y, x >= y, x < y, x <= y. The
size of and can be different and when it is the case, there is not necessary a
⚠️ message.

a.numeric >= rep(0.5, 3)
a.numeric >= rep(0.5, 4)

Note that each operator is actually a function:

a.numeric >= 0.5
`>=`(a.numeric, 0.5)

It also works for strings (the rules of lexicography depends on the local
setting):

a.character == "France"
a.character > "d"

x y

19 / 104

Vectors: Matching
To identify the positions of the element of in , use function match(x,
table):

clients_jour <- c("Dorian", "Inès")
base_clients <- c("Jordan", "Scottie", "Inès", "Dorian")
match(clients_jour, base_clients)

The operator x %in% y (very useful) looks if an element of x belongs to y. It is
using function match():

clients_jour %in% base_clients

Function which() returns the indices of the TRUE elements of a logical vector:

which(a.logical)

x table

20 / 104

Vectors: Multiple comparison
The operators &, | indicate logical AND, OR. There are vectorized.

a.numeric >= 0.5 & a.logical
a.integer == 1L | !a.logical

⚠️ The operators &&, || are short cut (do not evaluate a term if not necessary)
and are not vectorized (evaluate only the first element of a vector). For more
informations see this stackoverflow post

a.numeric >= 0.5 && a.logical
a.integer == 1L || !a.logical

The function all() verifies that all elements of a vector of logical are TRUE.
any() verifies that there is at least one TRUE

all(a.numeric >= 0.0 & a.numeric <= 1.0)
any(a.logical < 0L)

21 / 104

https://stackoverflow.com/questions/16027840/whats-the-differences-between-and-and-in-r

Vectors: Operation
To modify a vector, insert a vector of logical or the number of indices in the []

a.numeric[a.numeric > 1] <- a.numeric[a.numeric > 1] / 100
a.integer[which(a.integer == 1L)] <- 2L

The different "mathematical" operators are: +, -, *, /, ^, %%, %/%.

all.equal(100 * a.numeric, c(100, 100, 100, 100) * a.numeric)
5 / 2 + 1.5 * a.numeric - 2.5 * a.numeric ^ 2

⚠️ The length of vectors can be different. In some cases, the types can also be
different:

(1:9) ^ c(1, 2, 3)
(a.numeric * a.logical) ^ a.integer
a.character + a.numeric
paste(a.character, a.integer, sep = " : ")

22 / 104

Vectors: Mathematical vectorized functions
The algorithm to find the minimum of a vector is:

x <- rnorm(1000000)
system.time({
 n <- length(x)
 our_min <- x[1]

for (i in 2:n) {
if (x[i] < our_min)

 our_min <- x[i]
 }
 cat("our min is ", our_min, "\n")
}
)

🤔 Many base R functions are already vectorized (see this post for more
informations). Moreover, these functions call C, C++, or FORTRAN program to
carry out operations which explains why the computational time is better

system.time(min(x))

23 / 104

https://www.noamross.net/archives/2014-04-16-vectorization-in-r-why/

Vectors: Mathematical functions for numeric
type
We create a vector of numeric with one missing value (NA, for Non Availabale
different that NaN for Not a Number)

age <- c(25, 28, 30, NA, 21, 26, 29, 31, NA, 22, 27)

min(age, na.rm = T)
max(na.omit(age))
age[is.na(age)] <- mean(age, na.rm = T)
range(age)
sum(age)
median(age)
quantile(age, probs = 0.9)
1 / length(age) * sum((age - mean(age)) ^ 2)
sd(age) == sqrt(var(age))
cumsum(age)
sqrt(age)
exp(log(age))
cos(age)

24 / 104

rep() replicates elements of vectors
and lists :

rep(2, times = 5)
rep(c(1.2, 3.5), each = 2)

rev() reverses the elements of a
vector:

rev(age[order(age)])

seq_len(n) is equivalent to 1:n and
seq_along(x) is equivalent to
1:length(x)

seq_len(5)
1:5
seq_along(rnorm(5))

To generate regular sequences:

x <- seq(from = 0, to = 1,
 by = 0.1)
x <- seq(from = 0, to = 1,
 length.out = 10)
f <- function(x) 2 + 5 * x ^ 2
plot(x, f(x), type = 'l')

Vectors: Useful functions

25 / 104

We can make random permutation
with sample():

sample(age)

To make random sampling, use
option size.

sample(1:45, size = 5)

Option replace leads to sample with
replacement (useful for bootstrap
algorithm).

my_boot <- function(x, B) {
 res <- numeric(B)

for(i in 1:B)
 res[i] <- mean(sample(x, rep
 res
}

Application:

res_B <- my_boot(age, 100)
hist(res_B, xlab = "B-estimate o
 col = "lightblue")
abline(v = mean(age, na.rm = T)
abline(v = mean(res_B), col = "

Vectors: Useful functions (2)

26 / 104

We define two sets of elements:

A <- 1:10
B <- c(3:6, 12, 15, 18)

Union: can be seen as the
unique values of the vector
containing and :

unique(c(A, B))
union(A, B)

Intersection: can seen as the
values of included in

A[A %in% B]
intersect(A, B)

Differences:

setdiff(A, B)
setdiff(B, A)

Venn Diagram

gplots::venn(list(A = A, B = B)

Vectors: union, intersection

A B

A B

27 / 104

👩‍🎓 Training
Exercise 2.1

Describe what's gonna happen for each line of code:

c(21, 180, "F", "DU", "FR", TRUE)
TRUE | this_object_does_not_exist
TRUE || this_object_does_not_exist
c(1, 1, 1, 1) ^ c(0, 1) + c(0, 1, 2)

R includes a lot of base functions which can be seen here. Choose 5 of
them, describe and illustrate them.

Plot the function for

By using the function sample() draw a random sample of size 100 of a
Bernoulli distribution with

What are the differences between sort(), order() and rank()?

f(x) = exp(− x2)1
√2π

1
2

x ∈ [−4, 4]

p = 0.5

28 / 104

https://stat.ethz.ch/R-manual/R-devel/library/base/html/00Index.html

2. Basic data manipulation2. Basic data manipulation

b. Text miningb. Text mining

29 / 10429 / 104

Vector of strings: manipulation (1)
For a good introduction to text data, visit this web page or this course.

A string is a collection of characters. It is stored in a vector

a_1 <- c("String 1", "String 2")
a_2 <- c("String 1\n", "String\t2")

The function nchar() computes the number of characters of each element

nchar(a_1)
nchar(a_2)

⚠️ "\n" or "\t" are considered as special characters and " " is considered as
character. The special characters can be seen here. cat() allows to evaluate the
special characters.

cat(a_2)

30 / 104

https://www3.nd.edu/~steve/computing_with_data/19_strings_and_text/strings_and_text.html#/
https://www.gastonsanchez.com/Handling_and_Processing_Strings_in_R.pdf
https://en.wikipedia.org/wiki/Escape_character

Vector of strings: manipulation (2)
substr() allows to extract characters with respect to the position.

substr(c("code_A1", "code_A2"), start = 6, stop = 8)

paste() concatenates strings of different vectors. A character vector can be
collapsed to a string by using argument collapse.

paste(c("Opel", "Peugeot"), rep(2005:2009, each = 2), sep = "_")
paste(c("one", "character", "from", "a vector"), collapse = " ")

toupper() and tolower() convert all the character letters in upper or lower.

toupper(a_1)
tolower(a_2)

abbreviate() abbreviate strings .

abbreviate(c("Bosnie-Herzégovine", "Burkina Faso", "Côte d'Ivoire"

31 / 104

Vector of strings: pattern matching (1)
aa <- c("There are 7 words in this sentence.",

"Just 4 words here.")

grep() allows to identify the elements of a vector x which contain a pattern
of characters.

grep(pattern = "words", x = aa)

agrep() allows some differences in the pattern:

agrep(pattern = "wards", x = aa)

regexpr() indicates at which position of the string, the pattern has been
found:

gregexpr(pattern = "words", text = aa, ignore.case = TRUE)

32 / 104

Vector of strings: pattern matching (2)
strsplit() splits the elements of a character vector when a pattern has been
identified

res <- strsplit(aa, " ")
sapply(res, length)

gsub() search for matches to argument pattern within each element of a
vector x and do replacement:

gsub(pattern = "words", replacement = "mots", x = aa)

⚠️ Instead of using a pattern with a specific string, we can use a regular
expression. For example, to identify the elements of a vector which contains
one of this character : "0", "1", "2", "3", "4", "5", "6", "7", "8" ,"9":

gsub(pattern = "[[:digit:]]", replacement = "X", x = aa)

33 / 104

Regular expression (1)
A regular expression is a pattern that describes a set of strings (for more
informations, see help(regex) or this web page):

textes <- c("b.bi", "bibé", "tatane", "bAbA", "tbtc",
"tut", "byb=", "baba", "b\nb1", "t5t3")

In a regular expression, "." replaces any characters

print(grep("b.b.", textes))
print(grep("b\\.b.", textes))

[aeiouy] indicates that "a", "e", "i", "o", "u" or "y" are allowed. ^ is the
negation. - gives a sequence and [:digit:] allows any unicode digits

print(grep("t[aeiouy]t[aeiouy]", textes))
print(grep("t[^aeiouy]t[^aeiouy]", textes))
print(grep("t[a-z]t[a-z]", textes))
print(grep("t[[:digit:]]t[[:digit:]]", textes))

34 / 104

https://cupdf.com/document/les-expressions-regulieres-sous-r-ericuniv-lyon2-riccocoursslidestme-.html?page=1

Characters: Clean tweets
Text mining is very useful for the analysis of tweets.

tweet <- c("TopStartupsUSA: RT @FernandoX: 7 C's of Marketing in the
"#Analytics #MachineLearning #DataScience #MalWare #IIoT",
"YvesMulkers: RT @wil_bielert: RT @neptanum: Standard Model Physic
"#BigData #Analytics #DataScience #AI #MachineLearning #IoT #IIoT

Analysis of tweets:

correct <- gsub("(RT|via)((?:\\b\\W*@\\w+)+)", "", tweet)
correct <- gsub("@\\w+", "", correct)
correct <- gsub("[[:punct:]]", "", correct)
correct <- gsub("[[:digit:]]", "", correct)
correct <- gsub("http\\w+", "", correct)
correct <- gsub("[\t]{2,}", " ", correct)
correct <- gsub("^\\s+|\\s+$", "", correct)
correct <- iconv(correct, "UTF-8", "ASCII", sub="")

Package rtweet allows to import data from twitter (see vignette here)

35 / 104

https://cran.r-project.org/web/packages/rtweet/vignettes/intro.html

Characters: Word cloud
What can we do with words?

word <- unlist(strsplit(correct, " "))
tab_word <- table(word)
wordcloud::wordcloud(names(tab_word), tab_word)

See also this web page for more informations about "Text Mining"

36 / 104

https://www.tidytextmining.com/

Characters: Dedicated packages (1)
There exist some packages which try to simplify the R base code. Some of
them belong to the Tidyverse project.

library(tidyverse)

For example, to count the number of times character "a" is appearing in the
elements of a vector, we present here the code by using R base code and by
using stringr package:

res1 <- gregexpr(pattern = "a", text = word, ignore.case = T)
sapply(res1, function(x) ifelse(x[1] > 0, length(x), 0))
stringr::str_count(word, "a")

The package contains many other functions (see the vignette here). For
example str_pad() allows to fill the elements of vector until the number of
character is constant:

vec_to_change <- c("1", "10", "105", "9999", "0008")
stringr::str_pad(vec_to_change, 4, pad = "0")

37 / 104

https://www.tidyverse.org/packages/
https://cran.r-project.org/web/packages/stringr/vignettes/stringr.html

Characters: Dedicated packages (2)
To evaluate these objects into string, we will use paste() and cat() functions

name <- "Fred"
anniversary <- as.Date("1991-10-12")
age <- as.numeric(floor((Sys.Date() - anniversary)/365))
cat(paste0("My name is ", name,

", my age next year is ", age + 1,
", my anniversary is ", format(anniversary, "%A, %d %B, %Y")

whereas with glue package, we will do

require("glue")
new_object <- glue('My name is {name},',

' my age next year is {age + 1},',
' my anniversary is {format(anniversary, "%A, %d %B, %Y")}.')

new_object

38 / 104

👩‍🎓 Training
Exercise 2.2

Let consider the vector of strings my_word:

my_word <- c("we went 2 times to warwick",
"moi 1 fois 1 w-e")

give the character position of "we" in my_word

give the character position of "w" or "e" in my_word

give the character position of "we" in my_word, knowing that there is a
empty space before

give the character position of any numbers in my_word

count the number of times any numbers is appearing in my_word

39 / 104

2. Basic data manipulation2. Basic data manipulation

c. Matrices, lists and c. Matrices, lists and data.framedata.frame

40 / 10440 / 104

Matrix: Create
Matrix is a table in 2D which contains elements of the same type. It can be
created with the matrix() function which consists in transforming a vector into
a matrix. By default the matrix is filled by column (use byrow argument
otherwise).

a.vec <- c(25, 26, 30, 31, 26, 27, 29, 30, 22, 23)
a.matrix <- matrix(a.vec, nrow = 5, ncol = 2, byrow = T,
 dimnames = list(letters[1:5], c("y.2005", "y.2006")))

It has a dim attribute of length 2 (number of rows and columns) and an
optional dimnames attribute, a list of length 2 with the names of rows and
columns.

attributes(a.matrix)

It can also be done by merging vectors by row (rbind()) or by column (cbind()):

a.matrix.1 <- rbind(a.character, a.logical)
colnames(a.matrix.1) <- paste0("team_", 1:4)
rownames(a.matrix.1) <- c("country", "winner")
a.matrix.2 <- cbind(a.integer, a.numeric) 41 / 104

Matrix: Access and modify
Elements can be accessed as var[row, column]. Here row and column are
vectors of integer (the indices), character (the names) or logical.

a.matrix[c(2, 4), 2]
a.matrix[c("b", "d"), "y.2006"]
a.matrix[a.matrix[, 1] >= 30,]
a.matrix.1[, dimnames(a.matrix.1)[[2]] %in% c("team_1", "team_4")]

We can combine assignment operator with the above learned methods for
accessing elements of a matrix to modify it.

a.matrix[2, 2] <- round(a.matrix[2, 2], 0)

We can also use cbind() and rbind() for adding columns or rows

a.matrix <- cbind(a.matrix, y.2007 = a.matrix[, 2] + 1)
a.matrix <- rbind(a.matrix, f = c(31, 32, 33))

42 / 104

Matrix: Basic operations
We use the same operators +, -, *, /, ^, %%, %/% than for vectors. There are
some rules with respect to the dimension : a matrix of size can be
associated with a scalar and a vector of size lower than .

1 + 2 * a.matrix - 0.5 * a.matrix ^ 2
a.matrix + c(1, 2, 3)

which is equivalent to:

a.matrix + matrix(c(1, 2, 3), nrow(a.matrix),
 ncol(a.matrix))

A matrix can be associated with another matrix iif the dimensions coincide:

a.matrix[2:5, 1:2] + a.matrix.2 ^ 2
a.matrix[1:2,] + a.matrix.2 ^ 2

(n, p)
np

43 / 104

Matrix: function apply()
apply() is a common way for doing a for loop instruction. For example, instead
of doing:

my_res <- numeric(ncol(a.matrix))
for (k in 1:nrow(a.matrix)) {
 my_res <- my_res + a.matrix[k,]
}
my_res

We can do:

apply(a.matrix, MARGIN = 2, FUN = sum)

The second argument of the function indicates the dimension on which
applying the function FUN. The last argument can be a existing or personnal
function.

apply(a.matrix, 1, function(x) c(min(x), max(x)))

44 / 104

Matrix calculation (1)
y <- c(178, 180, 165, 158, 183)
x <- cbind(x0 = 1, x1 = c(0, 0, 1, 1, 0),
 x2 = c(43, 43, 40, 39, 45))

t() give the transpose of a matrix. Note that a transpose of a vector belongs
to the matrix class of object.

t(x)
t(y)

%*% allows to multiply two matrices if they are conformable

t(x) %*% y
t(x) %*% x

crossprod(x, y) is optimized to compute

crossprod(x, y)
crossprod(x)

xT y

45 / 104

Matrix calculation (2)
Note that a vector in R is considered as row-vector and column-vector (R
is actually doing the verification)

y %*% y
t(y) %*% y

solve(A, b) allows to resolve the linear problem . For example:

A <- crossprod(x)
b <- crossprod(x, y)
solve(A, b)

It allows to find the inverse of a square matrix by resolving :

solve(A) %*% b

To inverse a symmetric definite positive matrix, use instead the Cholesky
or factorization (more stable)

chol2inv(chol(A)) %*% crossprod(x, y)
qr.solve(A, b)

Ax = b

Ax = I

QR

46 / 104

Matrix calculation (3)
To deal with sparse matrix, we recommend to use Matrix package (or
alternatively spam).

library("Matrix")
mat <- matrix(rbinom(10000, 1, 0.05), 100, 100)
object.size(mat)
Mat <- as(mat, "Matrix")
object.size(Mat)

The same functions (crossprod(), solve(), etc.) and operators (%*%) can be
applied and will be faster.

47 / 104

👩‍🎓 Training: exercise 2.3
We consider the two vectors weight and group

ctl <- c(4.17, 5.58, 5.18, 6.11, 4.50, 4.61, 5.17, 4.53, 5.33, 5.14
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)

create a matrix X of dim which contains in the first column 1 if
group="Ctl", 0 otherwise, and contains in the second column 1 if
group="Trt" and 0 otherwise.

What does the following command do?

split(weight, group)

Compute the mean of weight in the two groups "Ctl" and "Trt"

20 × 2

48 / 104

👩‍🎓 Training: exercise 2.3
On the following figure, do you think there is a difference of weight
between the two groups ?

create matrix and where is the weight

solve the equation . We call hat_beta the solution of the equation

compute the adjusted values . We call hat_y this vector.

compute the vector of residuals . We call hat_e this vector

A = (X ′X) b = (X ′y) y

Aβ = b

ŷ = Xβ̂

ϵ̂ = y − ŷ

49 / 104

👩‍🎓 Training: exercise 2.3
Compute the sum of squares of the residuals. We call sse this value:

compute the residual standard error which is equal to

compute SST which is equal to

compute SSR which is equal to

verify that

compute the which is equal to SSR/SST

√SSE/(n − 2)

∑(y − ȳ)2

∑(ŷ − ȳ)2

SST = SSR + SSE

R2

50 / 104

Access the elements of a list (extract
of the H. Wickham R Advanced book)

❓ What are the results of

a$a_vector
a[[1]]
a[1]
a[1:2]
a[[4]][1]
a[[4]][[1]]

List: Create and access
A list contains several elements of different types and length. It can be created
with the list() function:

a <- list(a_vector = 1:3,
 a_character = "a string",
 a_scalar = pi,
 b_list = list(-1, -5))

51 / 104

List: Manipulation (1)
A list can be modified with [] or $:

a[[1]] <- a[[1]] + 1
a$a_scalar <- pi * 5 ^ 2
a$a_matrix <- matrix(c(1, 0, 1, 3, 2, 1),
 ncol = 3, byrow = T)

It can contain a function:

a$a_function <- function(x) x ^ 2
a$a_function(2)

The informations relative to a list can be obtained with length(), names() or
str().

length(a)
names(a)
str(a)

52 / 104

List: Manipulation (2)
To apply a function to each element of a list, use function lapply().

lapply(X = a, FUN = length)

Function sapply() is doing the same thing but tries (when it is possible) to
return the results in a more elegant way (a vector or a matrix for example)

sapply(X = a, FUN = length)

Argument FUN can contain an existing or a self-programmed function

lapply(X = a, FUN = function(x)
 ifelse(is.character(x), paste("number of characters: ", nchar(x))
 paste("length of object: ", length(x))))

53 / 104

Dataframe: Definition and attributes
A data.frame contains several elements of different types with same length. It
shares properties of matrix and list. It can be created by hand with the
data.frame() function.

age <- c(20, 21, 20, 25, 29, 22)
taille <- c(165, 155, 150, 170, 175, 180)
sexe <- c("F", "F", "F", "M", "M", "M")
don <- data.frame(age, taille, sexe, stringsAsFactors = T)

We can get the attributes of the data.frame with functions dim(), nrow(),
ncol(), colnames(), row.names().

dim(don)
nrow(don)
ncol(don)
colnames(don)
row.names(don)
don <- don[sample(nrow(don)),]
row.names(don)

54 / 104

Dataframe: Manipulation
To extract part of a data.frame, it is like a list. Be careful to distinguish the
row names with the number of rows.

don[c("1", "3", "5"),]
don[c(1, 3, 5),]
don[, c(2, 3)]
don[, c("age", "sexe")]
don[c("3", "5"), c(3, 5)]
don[don$sexe == "F",]
don[which(don$sexe == "F"),]

Function subset() allows to make a selection by doing conditions. User can call
directly the variable names without calling the data.frame

subset(don, sexe == "F")

55 / 104

Dataframe: row names and useful functions
In the tidyverse universe, it is recommended to store the ID's of the
observations in one specific variable:

don$id <- c("sonia", "maud", "iris", "mathieu", "amin", "gregory")
row.names(don) <- NULL

Here are some useful functions for data.frame:

head(don, 3)
tail(don, 4)
str(don)
summary(don)
res_lm <- lm(taille ~ sexe - 1, data = don)
summary(res_lm)

56 / 104

Dataframe: what is a factor?
In R, factors are used to work with categorical variables, variables that have a
fixed and known set of possible values

class(don$sexe)
levels(don$sexe)
don$sexe[1] <- "others"

To add a new level, it must be first specified

don$sexe <- factor(don$sexe, levels = c("F", "M", "others"))
don$sexe[1] <- "others"

A factor can order the levels which can be useful when plotting the
distribution:

don$note <- factor(c("AB", "B", "B", "P", "TB", "TB"),
 levels = c("P", "AB", "B", "TB"), ordered = T)
barplot(table(don$note))

57 / 104

Dataframe: Modify
Use [], $, or cbind() to add a column with respect to the match of dimensions
(there is a verification strict)

don$diplome <- c("DU", "M2", "M2", "DU", "DU", "M2")
don[, "diplome"] <- c("DU", "M2", "M2", "DU", "DU", "M2")
don <- cbind(don, pays = c("FR", "FR", "SG", "CA", "HA", "BF"),
 stringsAsFactors = F)

Use rbind() to add a row (with respect to the match of dimensions):

don <- rbind(don, list(21, 180, "F", "isa", "DU", "FR"))

Concatenate two dataframes (with respect to the match of names):

don2 <- data.frame(age = c(20, 21), taille = c(180, 175),
 sexe = c("M", "F"), id = c("pierre", "sonia"),
 diplome = c("DU", "DU"),
 pays = c("FR", "ESP"))
don <- rbind(don, don2)

58 / 104

Dataframe: Merge
note_1 <- data.frame(note_al = c(18, 10, 8, 15), id = c("101", "152
note_2 <- data.frame(note_st = c(5, 15, 20, 10), id = c("102", "120

To merge two data frame by using R base functions, we can do:

id_inter <- intersect(note_1$id, note_2$id)
data.frame(id = id_inter,
 note_al = note_1[match(id_inter, note_1$id), !names(note_1
 note_st = note_2[match(id_inter, note_2$id), !names(note_2

Function merge() allows to do other versions of database join operations:

merge(note_1, note_2, by.x = "id", by.y = "id")
merge(don, don3, by.x = "id", by.y = "nom", all.x = T)
merge(don, don3, by.x = "id", by.y = "nom", all.y = T)
merge(don, don3, by.x = "id", by.y = "nom", all = T)
merge(don, don3)

59 / 104

Dataframe: split/aggregate
don4 <- data.frame(note = c(18, 10, 8, 15, 20, 5, 17, 12, 8),
 semestre = c("s1", "s1", "s1", "s1", "s2", "s2",
 matiere = c("al", "st", "st", "st", "st", "al",

Function split() allows to split a vector or a data.frame with respect to a (list
of) categorical variable. The result is a list which allows to apply function
sapply() on it. Function tapply() does the two steps split/sapply in the same
function and it also does a merge step to get a data.frame.

my_split <- split(x = don4$note, f = don4[2:3])
sapply(my_split, mean)
tapply(X = don4$note, INDEX = don4[2:3], FUN = mean)

Function aggregate() can do the same thing for more than one variable. It is
possible to use the formula syntax:

aggregate(note ~ semestre + matiere, data = don4,
 FUN = mean, na.rm = T)

60 / 104

👩‍🎓 Training: Exercise 2.4
Execute the solution of exercice 2.3 and create a list object called res_lm
which contains the residuals, the SSE value and the .

Create a data.frame called pred_y which contains the fitted values, the
residuals and the variable.

R2

Y

61 / 104

2. Basic data manipulation2. Basic data manipulation
d. Examples of other useful classes of objectd. Examples of other useful classes of object

62 / 10462 / 104

Date with R
Reference of this section: see the R Task View

There exists a Date class of object to work with daily data.

(format.Date <- Sys.Date())
class(format.Date)
dates <- c("01/01/17", "02/03/17", "03/05/17")
as.Date(dates, "%d/%m/%y")
dates <- c("1 janvier 2017", "2 mars 2017", "3 mai 2017")
as.Date(dates, "%d %B %Y")

The POSIXct/POSIXt class of object contains the date + the time:

dates <- c("02/27/92", "02/27/92", "01/14/92",
"02/28/92", "02/01/92")

times <- c("23:03:20", "22:29:56", "01:03:30",
"18:21:03", "16:56:26")

x <- paste(dates, times)
strptime(x, "%m/%d/%y %H:%M:%S")

63 / 104

https://cran.r-project.org/web/views/TimeSeries.html

There exists many functions which
deal with this class of object:

(format.POSIXlt <- Sys.time())
class(format.POSIXlt)
weekdays(format.POSIXlt)
months(format.POSIXlt)
quarters(format.POSIXlt)

The zoo package allows to associate
a vector of values with a Date or
POSIXct/POSIXt. a Create time
object:

date_x <- seq.Date(as.Date("2017
require("zoo")
y_t <- 1 + 2 * (1:100) + 10 * co
x <- zoo(y_t, date_x)

To plot the series, the function
plot.zoo() allows to represent a serie
efficiently:

plot(x, col = c("blue", "red"))

POSIXct/POSIXt

64 / 104

Analysis of a time serie
Simulate Time series

set.seed(493)
x1 <- arima.sim(model = list(ar = c(.9, -.2)), n = 100)

To study the autocorrelations of a process, use acf() :

acf(x1)

To plot a lag-plot, use lag.plot()

lag.plot(x1)

65 / 104

require("sp")
seisme_df <- read.csv2(paste0(li
seisme <- seisme_df
coordinates(seisme) <- ~ Longitu
proj4string(seisme) <- CRS("+pro
 +ellp

To plot the map:

plot(seisme, cex = sqrt(seisme$M

Spatial data
For a full presentation of spatial data with R, see my course here.

link <- "http://www.thibault.laurent.free.fr/cours/R_intro/Ressource

In this example, we create a spatial object sp, we define the Coordinate
Referential System (CRS) and plot the data on the map

66 / 104

http://www.thibault.laurent.free.fr/cours/spatial/

3. Importing data3. Importing data

a. Usual file formatsa. Usual file formats

67 / 10467 / 104

Checklist
When using the data.frame class of object to import data, try to check the
following conditions:

With spreadsheets, first row is usually reserved for the header, while the
first column is used to identify units;
Avoid names, values or fields with blank spaces, otherwise each word will
be interpreted as a separate variable, resulting in errors that are related to
the number of elements per line;
Short names are prefered over longer names;
Try to avoid using names that contain symbols such as ?, $, %, ^, &, *, (,), -,
#, ?, , , <, >, /, |
Delete any comments that you have made in your Excel file to avoid extra
columns or NA’s to be added to your file; and
Make sure that any missing values in your data set are indicated with NA.

When using tibble class of object, some of these constraints are less important

68 / 104

Importing data from text data
link <- "http://www.thibault.laurent.free.fr/cours/R_intro/Ressource

Function readLines() can be used to read only few rows, to have an
overview of the data file structure:

readLines(con = paste0(link, "dontxt_correct.txt"), n = 2)

Function read.table() is used to import all kind of text files such that ".txt"
or ".csv". It contains many arguments to fill:

don.txt <- read.table(file = paste0(link, "dontxt_correct.txt"),
 header = TRUE,
 sep = "", dec = ".", na.strings = "NA",
 nrows = -1,
 skip = 0,
 stringsAsFactors = default.stringsAsFactors(),
 fileEncoding = "",
 encoding = "unknown")
head(don.txt)

69 / 104

Importing data from classical formats
Functions read.csv() and read.csv2() are wrappers of read.table to import
"csv" files:

don.csv <- read.csv2(file = paste0(link, "communes-de-toulouse-metro
head(don.csv)

Function fromJSON() from jsonlite package allows to import "json" format:

elec <- "https://www.data.gouv.fr/fr/datasets/r/cae2bd1b-e682-4866-9
don.json <- jsonlite::fromJSON(elec)

function load() allows to import objects saved in the R format (".RData"
file):

save(don, don3, file = "data_exo.RData")
load("data_exo.RData")

70 / 104

Importing data from statistical softwares
Package readxl is part of the Tidyverse project. Function read_xls() allows
to import data in the Excel format.

f <- "https://www.insee.fr/fr/statistiques/fichier/3292622/dep31.xls
download.file(f, destfile = paste0(getwd(), "/dep31.xls"))
don.xls <- readxl::read_xls("dep31.xls", skip = 7)

The result is an object of class tibble (see this chapter book for more
informations). It is very similar to a data.frame object but with less
constraints (for example, only few rows of code are printing, the name of the
variables can be anything, etc.).

Package sas7bdat allows to import data saved with SAS (".sas7bdat" file):

don.sas <- sas7bdat::read.sas7bdat(paste0(link, "baseball.sas7bdat"

foreign package allows to import data saved in the Stata format (".dta"
file):

automiss <- foreign::read.dta(paste0(link, "automiss.dta"))

71 / 104

https://www.tidyverse.org/packages/
https://r4ds.had.co.nz/tibbles.html

Importing data from the Web
XML packages allows to import data stored in ".xml" file

library("XML")
don.xml <- xmlParse(paste0(link, "input.xml"))
rootnode <- xmlRoot(don.xml)
print(rootnode[1])
rootsize <- xmlSize(rootnode)
xmldataframe <- xmlToDataFrame(paste0(link, "input.xml"))
print(xmldataframe)

Package rtweet allows to import data from Twitter (need a twitter
account). See the vignette for more informations.

72 / 104

https://cran.r-project.org/web/packages/rtweet/vignettes/intro.html

3. Importing data3. Importing data

b. Big data filesb. Big data files

73 / 10473 / 104

Create a big file of data and export it
We consider a first type of data: big but not big enough for not being imported
with R. We create such a data set with 500,000 rows and 3 columns:

n <- 500000 # to modify

data_to_import <- data.frame(chiffre = 1:n,
 lettre = paste0("caract", 1:n),
 date = sample(seq.Date(as.Date("2017-10-01"), by = "day",
 len = 100), n, replace = T))

Function object.size() gives the memory used to store an R object. Here, our
data consumes Mo of RAM (most of the recent machines have at least 4Go
of RAM).

object.size(data_to_import)

Finally, we export the object as a "txt" file. It occupies Mo disk memory:

write.table(data_to_import, "fichier.txt", row.names = F)
file.info("fichier.txt")

40

16

74 / 104

Import a big file (1)
Function system.time() returns the computational time.

Solution 1: When using stringsAsFactors = T, the categorical variables are
coded into a factor. It is time consuming, because R has to determine first
the different possible levels before storing it.

system.time(import1 <- read.table("fichier.txt", header = T,
 stringsAsFactors = T))

Solution 2: After useR!2019 conference in Toulouse, the R core decided to
save the strings as character. The reason used is not the computational
time, but the non reproducible issue due to the characters sorting (for
more informations, see this post).

system.time(import2 <- read.table("fichier.txt", header = T))

75 / 104

https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/index.html

Import a big file (2)
Solution 3: identify first the types of the variables

bigfile_sample <- read.table("fichier.txt", header = T, nrows = 20)
(bigfile_colclass <- sapply(bigfile_sample, class))

Then, import the data by specifying the types. It avoids to read all the data
before defining the types.

system.time(bigfile_raw <- read.table("fichier.txt", header = T,
 colClasses = bigfile_colclass))

76 / 104

Use dedicated packages
The Tidyverse project includes the package readr which allows to
optimize the importation of the data.

system.time(
 tibble.don <- readr::read_table2("fichier.txt"))
object.size(tibble.don)
class(tibble.don)

Package data.table is an alternative which use another class of object
(data.table) with some specific rules of manipulation (see this web page
for more informations).

system.time(
 objet.data.table <- data.table::fread("fichier.txt"))
class(objet.data.table)

77 / 104

https://www.tidyverse.org/packages/
https://github.com/Rdatatable/data.table/wiki

What is big data?
When does data become very big? With R, data is stored in RAM. Data
becomes too big when the machine has not enough RAM for storing it.

What can I do?

Make the data smaller (sampling)

Get a bigger computer

Split up the dataset for analysis (Map/Reduce)

Access the data differently (ff package or interact with Database
Management System)

References:

http://www.columbia.edu/~sjm2186/EPIC_R/EPIC_R_BigData.pdf
https://rpubs.com/msundar/large_data_analysis

78 / 104

http://www.columbia.edu/~sjm2186/EPIC_R/EPIC_R_BigData.pdf
https://rpubs.com/msundar/large_data_analysis

Example of big data
Create a big data (around 50 millions of rows):

readr::write_csv(data_to_import, "big_file.csv")
require(dplyr)
p <- progress_estimated(100)
for(k in 1:100){
 p$pause(0.1)$tick()$print()
 readr::write_csv(data_to_import, "big_file.csv", append = T)
}

With this example, the data.frame is around Go (it corresponds to Go
on disk).

my_big_data <- readr::read_csv("big_file.csv")
object.size(my_big_data)
file.info("big_file.csv")

Here, many operations (extraction, statistics, etc.) can be done even if it
becomes costly in computational time.

However, let supposes that this dataset could not to be loaded in R.

1.2 1.5

79 / 104

Map/Reduce algorithm
Map/Reduce algorithm can be used for avoiding to import all the data set at the
same time. It consists in splitting the data and doing a job in each data (Map
step). The reduce step consists in assembling the results. 🤔 Parallel
computing can be used to get higher performance

n_split <- 11
ind <- 1
n_max <- 5000001
my_max <- numeric(n_split)
my_mean <- numeric(n_split)
my_n <- numeric(n_split)
for (k in 1:n_split) {
 split_don <- read_csv("big_file.csv", skip = ind, n_max = n_max,
 col_names = c("chiffre", "lettre", "date"),
 col_types = "ncc")
 my_max[k] <- max(split_don$chiffre)
 my_mean[k] <- sum(split_don$chiffre)
 my_n[k] <- nrow(split_don)
 ind <- ind + n_max
}
sum(my_mean) / sum(my_n)
max(my_max) 80 / 104

Access the data differently
package ff uses hard disk to store the native binary flat files rather than its
memory (see this tutorial for more informations). Many algorithms for
base statistics methods (min, max, sum, mean, etc) can then be applied
with ffbase.

require("ff")
bigDF <- read.csv.ffdf(file="big_file.csv", header = TRUE,
 first.rows = 500000, next.rows = 5000000)
basename(filename(bigDF$date))

object.size(bigDF)
bigDF[25000000:25000003,]
tail(bigDF)
library("ffbase")
mean.ff(bigDF$chiffre)

Alternative: package disk.frame(see Githun).

Interact with Database Management System (DBMS) by using R packages
RODBC, RMySQL, RPostgresSQL, RSQLite or mongolite/couchDB.

81 / 104

https://www.slideshare.net/ajayohri/bitff21-2-wuvienna2010?next_slideshow=1
https://github.com/xiaodaigh/disk.frame

👩‍🎓 Training
Exercise 3.1

Import one data set from these different web pages by using the method
of your choice:

link 1

link 2 (import if possible a ".xls" file)

link 3

82 / 104

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://www.data.gouv.fr/fr/datasets/r/94525672-4ec3-4699-a56b-607dfabb1b3c
https://www.data.gouv.fr/fr/datasets/elections-municipales-2020-liste-des-candidats-elus-au-t1-et-liste-des-communes-entierement-pourvues/

4. Data cleaning4. Data cleaning

a. Missing valuesa. Missing values

83 / 10483 / 104

iris.mis <- missForest::prodNA(i
visdat::vis_miss(iris.mis)

ggplot(iris.mis, aes(x = Sepal.
 naniar::geom_miss_point() +
 facet_wrap(~Species)

Visualizing missing values
R packages visdat and naniar include many different tools for visualizing
missing values (see vignette for more information).

84 / 104

http://naniar.njtierney.com/articles/getting-started-w-naniar.html

How to deal with NA?
The reference of this section can be found here.

Doing nothing:

res_lm <- lm(Sepal.Width ~ Sepal.Length + Petal.Length +
 Petal.Width + Species, data = iris.mis)

Deletion

iris.mis <- subset(iris.mis, !is.na(Species))

Mean/ Mode/ Median Imputation

ind_NA_Sepal.Length <- is.na(iris.mis$Sepal.Length)
mean_spec <- aggregate(Sepal.Length ~ Species,
 data = iris.mis, FUN = mean, na.rm = T)
for (k in levels(iris.mis$Species)) {
 iris.mis[ind_NA_Sepal.Length & iris.mis$Species == k,

"Sepal.Length"] <- mean_spec[mean_spec$Species == k, 2]
}

85 / 104

https://medium.com/coinmonks/dealing-with-missing-data-using-r-3ae428da2d17

Examples of treatement
Prediction Model

iris.imp_mean <- data.frame(sapply(iris.mis[, 1:4],
function(x) ifelse(!is.na(x), x, mean(x, na.rm = T))),

 Species = iris.mis$Species)
pred <- predict.lm(res_lm, newdata = iris.imp_mean)
iris.mis[is.na(iris.mis$Sepal.Width), "Sepal.Width"] <-
 pred[is.na(iris.mis$Sepal.Width)]

Dedicated packages: MICE, Amelia, missForest

require("missForest")
iris.imp <- missForest(iris.mis)

KNN Imputation

require("DMwR")
iris.knn <- knnImputation(iris.mis, k = 2)

86 / 104

4. Data cleaning4. Data cleaning

b. Tidyverse universe: data managementb. Tidyverse universe: data management

87 / 10487 / 104

dplyr
dplyr package belongs to the tidyverse universe. It allows to use another
approach to manipulate data instead of using the R base syntax.

require("tidyverse")
data("diamonds")

We're going to learn some of the most common dplyr functions:

select(): subset columns
filter(): subset rows on conditions
mutate(): create new columns by using information from other columns
group_by() and summarize(): create summary statistics on grouped data
arrange(): sort results
count(): count discrete values

88 / 104

dplyr: Filtering
filter() allows to subset rows using column values.

Example: instead of using the following R base code to subset the data:

filt <- diamonds[diamonds$price > 15000 & (diamonds$color == "E" | d

It can be done like this with the tidyverse syntax:

filt <- filter(diamonds, price > 15000 & (color == "E" | color == "
filt <- filter(diamonds, price > 15000, (color == "E" | color == "F

Remark: the & operator can be replaced by the coma.

89 / 104

dplyr: select
Function select() allows to extract variables. Instead of doing:

select1 <- diamonds[, c("carat", "price", "color", "y")]

We can do:

select1 <- select(diamonds, carat, price, color, y)

There are some shortcuts to make characters matching. For example, if
we want to select the variables that contain character "y" in the names, it
can be done like this with R base syntax:

select1 <- diamonds[, names(diamonds)[grep("y", names(diamonds))]]

function contains() allows to do the same thing:

select1 <- select(diamonds, contains("y"))

90 / 104

dplyr: rename, mutate
Function rename() allows to change the names of columns. Instead of
doing:

names(diamonds)[c(match("y", names(diamonds)),
 match("x", names(diamonds)))] <- c("width", "lengt

It can be done like this:

renom1 <- rename(diamonds, width = y, length = x)

Function mutate() allows to create new variables. Instead of doing:

diamonds$prix.kilo <- diamonds$price/diamonds$carat
diamonds$prix.kilo.euro <- diamonds$prix.kilo * 0.9035

It can be done like this:

calcul1 <- mutate(diamonds, prix.kilo = price/carat,
 prix.kilo.euro = prix.kilo * 0.9035)

91 / 104

Pipeline operator on vectors
The pipeline operator %>% consists in calling an R object on the left on which
we want to apply a function on the right. For example to compute the mean of
a vector:

x <- c(10, 8, 5, 12, 9, 12)
x %>% mean()

[1] 9.333333

It is possible to execute successive pipeline operator:

x <- c(10, 8, 5, 12, 9, 12, NA, - 5)
x %>%
 replace(list = which(x < 0), NA) %>%
 na.omit() %>%
 mean()

[1] 9.333333

92 / 104

Pipeline operator on data.frame
It can be interesting to use pipeline operator on data.frame because it allows
to make successive operations in one command and leads the different
operations understandable. For example, to compute the mean of variables
price and carat after filtering the data, one can do in R base code:

sapply(diamonds[diamonds$price > 15000 &
 (diamonds$color == "E" | diamonds$color == "F"),
 c("price", "carat")],
 FUN = mean)

It can be done like this with the pipeline syntax:

diamonds %>%
 filter(price > 15000, (color == "E" | color == "F")) %>%
 select(price, carat) %>%
 sapply(FUN = mean)

93 / 104

dplyr: ordering
function arrange() allows to order data with respect to one variable. Instead of
doing with R base code:

diamonds[order(diamonds$cut, diamonds$color, -diamonds$price),]

One ca do by using the tidyverse universe:

arrange(diamonds, cut, color, desc(price)) %>%
 head(n = 3)

A tibble: 3 × 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
1 2.02 Fair D SI1 65 55 16386 7.94 7.84 5.13
2 2.01 Fair D SI2 66.9 57 16086 7.87 7.76 5.23
3 3.4 Fair D I1 66.8 52 15964 9.42 9.34 6.27

94 / 104

dplyr: count observation by group
To count the number of observations by group, instead of doing the following
codes by using base R code (the result is a vector):

sapply(split(diamonds, diamonds$color), FUN = nrow)

D E F G H I J
6775 9797 9542 11292 8304 5422 2808

One can do (the result is a data.frame):

diamonds %>%
 count(color)

A tibble: 7 × 2
color n
<ord> <int>
1 D 6775
2 E 9797
3 F 9542
4 G 11292
5 H 8304
6 I 5422 95 / 104

dplyr: summarize
Function summarize() allows to compute statistics like the mean, median,
etc. for each combination of grouping variables. Instead of doing the
follwing codes by using R base code:

calcul_a <- aggregate(formula = price ~ cut + color, data = diamonds
 c(mean = mean(x), n = length(x)))

One can do with the tidyverse syntax:

calcul2 <- summarise(group_by(diamonds, cut, color),
 size = n())

Remark: Note that function n() gives the current group size

96 / 104

dplyr: summarize
We can summarize all the commands exectuted by using the pipeline
operator:

diamonds %>%
 filter(price > 15000, (color == "E" | color == "F")) %>%
 mutate(prix.kilo = price/carat,
 prix.kilo.euro = prix.kilo * 0.9035) %>%
 group_by(cut, color) %>%
 summarize(eff = n(),
 prix.moy = mean(prix.kilo))

97 / 104

4. Data cleaning4. Data cleaning

b. Tidyverse universe: tidy data with b. Tidyverse universe: tidy data with tidyrtidyr

98 / 10498 / 104

tidyr: tidy data (separate)
What is tidy data: data sets that are arranged such that each variable is a
column and each observation (or case) is a row.

tidyr package transform data from messy to tidy (more informations here)

wide_data <- data.frame(country = c("C_1", "C_2"),
 Y = c("6/4.6"),
 X1 = c("7.8-0.6"))

Function separate() splits a variable into two variables with respect to a
string

wide_data <- wide_data %>%
 separate(col = Y, into = c("Y_2009", "Y_2019"), sep = "/") %>%
 separate(col = X1, into = c("X_2009", "X_2019"), sep = "-")

99 / 104

https://r4ds.had.co.nz/tidy-data.html

From wide...

country Y_2009 Y_2019

C_1 6 4.6

C_2 6 4.6

... to long

country years Y

C_1 Y_2009 6

C_1 Y_2019 4.6

C_2 Y_2009 6

C_2 Y_2019 4.6

tidyr: wide to long (1)
The same variable is observed at different time in two columns. It should be
included in one unique variable , the year should be another variable and
the countries duplicated for each year.

Function pivot_longer() (ex gather()) vectorizes argument cols (here Y_2009,
Y_2019, etc.) into argument values_to (here Y) and creates a variable
names_to (here year) with the names of cols

Y
Y

100 / 104

tidyr: wide to long (2)
Applications to our data set: we must gather then , and finally merge the
data. All can be done by using the pipeline operator

merge(wide_data %>%
 select(country, Y_2009, Y_2019) %>%
 pivot_longer(cols = c("Y_2009", "Y_2019"),
 names_to = "years",
 values_to = "Y") %>%
 mutate(years = substr(years, 3, 6)),
 panel_data %>%
 select(country, X_2009, X_2019) %>%
 pivot_longer(cols = c("X_2009", "X_2019"),
 names_to = "years",
 values_to = "X") %>%
 mutate(years = substr(years, 3, 6)),
 by = c("country", "years")
)

Y X

101 / 104

tidyr: wide to long (3)
Previous codes can be simplified by using regular expressions (this is a special
syntax for finding characters).

pivot_longer(wide_data,
 cols = 2:5,
 names_to = c(".value", "year"),
 names_pattern = "(.)_(.*)")

A tibble: 4 × 4
country year Y X
<chr> <chr> <chr> <chr>
1 C_1 2009 6 7.8
2 C_1 2019 4.6 0.6
3 C_2 2009 6 7.8
4 C_2 2019 4.6 0.6

102 / 104

From long...

country key value

C_1 X 25

C_2 X 45

C_1 Y 2500

C_2 Y 5500

... to wide

country X Y

C_1 25 2500

C_2 45 5500

tidyr: long to wide
long_data <- data.frame(country = c("C_1", "C_2", "C_1", "C_2"),
 key = c("X", "X", "Y", "Y"),
 value = c(25, 45, 2500, 5500))

value includes the values of two variables X and Y. key contains the labels X
and Y. We should have one column for X and one column for Y. Function
pivot_wider() (ex spread()) spreads the vector with argument values_from
(here value) with respect to the argument names_from (here key).

pivot_wider(long_data, names_from = key, values_from = value)

103 / 104

👩‍🎓 Training: Exercise 4.1
In the data admnrev from package wooldridge, transform the data from
the long to the wide form with respect to the variable year. We call
admnrev_wide this object

Transform the object admnrev_wide from wide to long object.

104 / 104

