
Guidelines on areal interpolation methods (supplementary material)

V. H. Do, T. Laurent, A. Vanhems

Last update: 2020-10-20

Contents
1 The data 2

1.1 Targets . 2
1.2 1st kind of sources: data at the cell level . 6
1.3 2nd kind of sources: data at the iris level . 10
1.4 Auxiliary information . 12
1.5 Figure 1 in the book chapter . 13

2 Point-in-polygon method 16
2.1 Illustration . 16
2.2 Extensive variables . 17
2.3 Intensive variables . 20
2.4 Limitation of the point-in polygon method . 24

3 Areal weighting interpolation (DAW) method 25
3.1 Extensive variable . 25
3.2 Comparaison between PIP and DAW . 28
3.3 Intensive variable . 30

4 Dasymetric method with auxiliary variable X (DAX) 36
4.1 Extensive variables . 36
4.2 Comparaison between DAW and DAX . 38
4.3 Intensive variables . 40
4.4 Comparaison between DAX and DAW . 44

5 Dasymetric method with control zones 45
5.1 Step 1: DAW method . 45
5.2 Step 2: DAX method . 46

6 Regression Modelling 49
6.1 Construction of the covariates . 49
6.2 Exploratory Analysis . 51
6.3 Regression modelling . 53

Packages needed:
install.packages(c("sf", # spatial data structure

"tidyverse", # tidyverse universe
"gridExtra", # ggplot2 extra plot
"ggspatial", # plot fanzy map
"readxl", # import excel files
"corrplot", # correlation plot

1

"rpart", # regression tree
"rattle" # fanzy regression tree plot
)

)

library(ggspatial)
library(readxl)
library(sf)
library(tidyverse)
library(corrplot)
library(rattle)
library(rpart)

This document presents the R codes used to obtain the computational results included in the chapter book.
It also contains tables and additional graphs which were not included in the chapter book.

1 The data

The results of the election are released by the Ministry of Interior in open access (source: https://www.data.g
ouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/) at the polling place scale.

1.1 Targets

Our targets are the polling place in the 2015’Departemental elections. To obtain the administrative boundaries
of the polling place, we use the maps provided by the Cartelec project (http://cartelec.univ-rouen.fr/).

We will focus here on the polling places in Toulouse, but our codes could be used for any other regions.
we define the name of the city
city_name_chapter <- "Toulouse"

import the data
bv <- read_sf("./data/BV_grandes_villes_2015/BV_grandes_villes_2015.shp")

We only keep the variables **NOM** and **BUREAU** in this database
bv <- select(bv, CODE, NOM, BUREAU)

We extract the rows corresponding to the chosen city :
bv_sample <- bv[grep(city_name_chapter, bv$NOM),]

We change the codification of the **BUREAU** variable such that
it is the same across the different data bases:
bv_sample$BUREAU <- sapply(strsplit(bv_sample$BUREAU, "_"), function (x) x[2])
bv_sample$BUREAU <- ifelse(nchar(bv_sample$BUREAU) == 4, bv_sample$BUREAU,

paste("0", bv_sample$BUREAU, sep = ""))

There are T = 256 targets (polling places) in Toulouse. We print the summary statistics of the area.
summary(st_area(bv_sample))

Min. 1st Qu. Median Mean 3rd Qu. Max.
23846 136342 209436 464303 395699 8164842

2

https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/
https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/
http://cartelec.univ-rouen.fr/

The same thing can be done for the other geometries. Table 1 presents the areas of sources and targets (the
code used to obtain the Table is presented hereafter, once all the data have been imported).

Table 1: Statistics on the areas (in m2) with respect to sources and targets
Min Q1 Median Mean Q3 Max

Polling places (targets) 23 846 136 342 209 436 464 303 395 699 8 164 842
Small cells (sources) 40 021 40 024 40 026 40 026 40 027 40 030
Big cells (sources) 40 021 40 025 40 026 277 540 40 028 4 002 961

Iris (sources) 79 843 237 291 344 533 770 352 725 516 8 326 068

The next step is to associate the “Departementales 2015” election results to that geographical data basis. We
import the “Departementales 2015” election results directly from that link https://www.data.gouv.fr/fr/data
sets/elections-departementales-2015-resultats-par-bureaux-de-vote/ :
link_bv <- "https://www.data.gouv.fr/s/resources/elections-departementales-2015-resultats-par-bureaux-de-vote/"
don_dep_2015 <- read_csv2(paste0(link_bv, "/20150925-104418/DP15_Bvot_T1T2.txt"))

We properly clean up the geographic code of the communes :
don_dep_2015$CODGEO <- paste(don_dep_2015$CODDPT,

ifelse(nchar(don_dep_2015$CODSUBCOM)==1,
paste("00", don_dep_2015$CODSUBCOM, sep = ""),

ifelse(nchar(don_dep_2015$CODSUBCOM)==2,
paste("0", don_dep_2015$CODSUBCOM, sep = ""),

don_dep_2015$CODSUBCOM)), sep = "")

We also focus on the polling places corresponding to the chosen city :
sample_2015 <- don_dep_2015[intersect(grep(city_name_chapter, don_dep_2015$LIBSUBCOM),

grep(city_name_chapter, don_dep_2015$LIBCAN)),]

we first separate the results from the tour 1 and tour 2
sample_2015_T1 <- filter(sample_2015, NUMTOUR == 1)
sample_2015_T2 <- filter(sample_2015, NUMTOUR == 2)

We reshape the data :
sample_2015_T1_bv <- sample_2015_T1 %>%

select(CODDPT, CODCAN, CODGEO, CODBURVOT, NBRINS, CODNUA, NBRVOIX) %>%
pivot_wider(names_from = "CODNUA",

values_from = "NBRVOIX")

We verify that the number of polling place in the chosen city is the same
as in the previous data basis:
nrow(sample_2015_T1_bv) == nrow(bv_sample)

We change the name of some variables:
ind_BC <- grep("BC", names(sample_2015_T1_bv))
names(sample_2015_T1_bv)[ind_BC] <- sapply(strsplit(names(sample_2015_T1_bv)[ind_BC], "-"),

function(x) paste(x, collapse = "_"))

We now merge the geographical data with the election data.
bv_sample <- merge(bv_sample, sample_2015_T1_bv, by.x = "BUREAU", by.y = "CODBURVOT")

We determine the total number of voters by summing the results obtained by each party represented in the chosen city:
bv_sample$nb_voters <- bv_sample %>%

3

https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/
https://www.data.gouv.fr/fr/datasets/elections-departementales-2015-resultats-par-bureaux-de-vote/

st_set_geometry(NULL) %>%
select(contains("BC_")) %>%
rowSums(na.rm = TRUE)

We determine the percentage of radical right votes and the percentage of turnout
bv_sample <- bv_sample %>%

mutate(taux_fn = BC_FN / nb_voters * 100,
turnout = (1 - nb_voters / NBRINS) * 100)

Define the CRS
st_crs(bv_sample) <- "+proj=lcc +lat_1=49 +lat_2=44 +lat_0=46.5 +lon_0=3

+x_0=700000 +y_0=6600000 +ellps=GRS80 +units=m +no_defs"

At this step, we have created the following variables that can be represented in maps (not presented in the
chapter of the book).

• taux_fn: the dependent variable,
ggplot(data = bv_sample) +

labs(fill = "XR score") +
geom_sf(aes(fill = taux_fn)) +

annotation_scale(location = "bl", width_hint = 0.5)

6 km

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

1.35°E 1.4°E 1.45°E 1.5°E

10

15

20

25

30

XR score

• turnout: the percentage of turnout.
ggplot(data = bv_sample) +

labs(fill = "Turnout") +
geom_sf(aes(fill = turnout)) +

annotation_scale(location = "bl", width_hint = 0.5)

4

6 km

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

1.35°E 1.4°E 1.45°E 1.5°E

50

60

70

80

Turnout

We also represent the scatter plot of the two variables, and it seems that the turnout has a positive effect on
the extreme right score:
ggplot(data = bv_sample) +

aes(x = turnout, y = taux_fn) +
geom_point() +
geom_smooth(method = "lm",

col = "red") +
labs(x = "Turnout", y = "XR score")

`geom_smooth()` using formula 'y ~ x'

5

10

15

20

25

30

50 60 70 80
Turnout

X
R

 s
co

re

Summary statistics of the two variables are presented in Table 2.
stargazer::stargazer(round(t(sapply(st_drop_geometry(bv_sample[,

c("taux_fn", "turnout")]), function(x) c(mean(x), sd(x), min(x), max(x)))), 2))

Table 2: Summary statistics of the variables observed at the target levels: extreme right score (dependent
variable) and turnout (explanatory variable)

Variable Description Mean Sd Min Max
taux_fn Extreme Right vote (in percentage) 16.09 5.29 7.39 31.68
turnout Turnout (in percentage) 56.86 6.90 45.20 85.96

1.2 1st kind of sources: data at the cell level

The INSEE data are obtained thanks to the income tax files (source: https://www.insee.fr/fr/statistiques/4
176281?sommaire=4176305). There are two different levels of cells.

• The finest level is the cell of dimension 200m× 200m. There are S = 2 027 different sources. The areas
of the cells are all the same and equal to 40 000m2.

cell_200m <- read_sf("./data/Filosofi2015/Filosofi2015_carreaux_200m_metropole.shp")

select the cells falling in Toulouse
cell_200m <- cell_200m %>%

filter(Depcom == "31555") %>%
select(-Id_carr1km, -Id_carr_n, -Id_car2010, -Groupe, -Depcom)

change the crs
cell_200m <- st_transform(cell_200m, st_crs(bv_sample))

• The second level is more aggregated so that the sources have enough inhabitants to solve the confiden-
tiality problems. The number of sources is equal in that case to S = 591, and the cells have different
sizes (473 cells of size 200m× 200m, 109 cells of size 1000m× 1000m and 9 cells of size 2000m× 2000m):

cell_big <- read_sf("./data/Filosofi2015_naturel/Filosofi2015_carreaux_niveau_naturel_metropole.shp")

6

https://www.insee.fr/fr/statistiques/4176281?sommaire=4176305
https://www.insee.fr/fr/statistiques/4176281?sommaire=4176305

target
source

Figure 1: Sources at the finest level

change the crs
cell_big <- st_transform(cell_big, st_crs(bv_sample))

ind_touches <- st_intersects(cell_big, bv_sample)
ind_touches <- apply(ind_touches, 1, any)
cell_big <- cell_big[ind_touches,]
change the crs
cell_big <- st_transform(cell_big, st_crs(bv_sample))

1.2.1 Which levels should we choose?

For the small cells, the total area is equal to :
sum(st_area(cell_200m))

81132570 [m^2]

whereas in the case of the large cells, it is equal to:
sum(st_area(cell_big))

164026135 [m^2]

The total number of inhabitants observed on the small cells is equal to :
sum(cell_200m$Ind)

[1] 404497

whereas in the case of the large cells, it is equal to:

7

Figure 2: Sources at the aggregated level

sum(cell_big$Ind)

[1] 457031.5

1.2.2 Variables observed

The variables of interest provided by the INSEE are presented in Table 3.
stargazer::stargazer(round(t(sapply(st_drop_geometry(cell_200m[, c("Ind", "Men",

"Men_pauv", "Men_prop", "Men_coll", "Men_mais", "Log_ap90", "Log_soc", "Ind_0_3",
"Ind_4_5", "Ind_6_10", "Ind_11_17", "Ind_18_24", "Ind_25_39", "Ind_40_54",
"Ind_55_64", "Ind_65_79", "Ind_80p", "Ind_inc")]),
function(x) c(mean(x), sd(x), min(x), max(x)))), 0))

The intensive variables that we consider are:

• prop_Ind_under_18, the proportion of inhabitants under 18 years old, which is the ratio of the
two extensive variables : Ind_0_17 (number of inhabitants less than 18 years old) and Ind (number
of inhabitants).

• pop_dens, the population density which corresponds to the number of inhabitants Ind divided by the
area of the source area that we obtain with the variable t_maille which contains the length of a cell.

Here, we create the variables Ind_0_17, area, prop_Ind_under_18 and pop_dens:
cell_200m$area <- as.numeric(st_area(cell_200m)) / 1000 ^ 2
cell_big$area <- as.numeric(st_area(cell_big)) / 1000 ^ 2
cell_200m <- cell_200m %>%

mutate(
Ind_0_17 = (Ind_0_3 + Ind_4_5 + Ind_6_10 + Ind_11_17),

8

Table 3: Summary statistics of variables of interest (target variables) provided by INSEE at the small cells
level
Extensive variables Description Mean Sd Min Max

Ind Number of individuals 200 199 1 1 700
Men Number of households 101 107 0 909

Men_pauv Number of poor households 19 26 0 227
Men_prop Number of owner households 39 43 0 477
Men_coll Number of households in collective dwellings 82 106 0 909
Men_mais Number of house households 19 20 0 104
Log_ap90 Number of dwellings built since 1990 37 60 0 614
Log_soc Number of social housing 17 43 0 378
Ind_0_3 Number of individuals aged 0 to 3 11 13 0 106
Ind_4_5 Number of individuals aged 4 to 5 5 6 0 55
Ind_6_10 Number of individuals 6 to 10 years old 11 13 0 124
Ind_11_17 Number of individuals aged 11 to 17 13 15 0 156
Ind_18_24 Number of individuals aged 18 to 24 15 18 0 126
Ind_25_39 Number of individuals aged 25 to 39 56 65 0 579
Ind_40_54 Number of individuals aged 40 to 54 37 36 0 322
Ind_55_64 Number of individuals aged 55 to 64 20 20 0 173
Ind_65_79 Number of individuals aged 65 to 79 19 22 0 177
Ind_80p Number of individuals aged 80 and above 10 13 0 109
Ind_inc Number of individuals whose age is unknown 4 5 0 34

prop_Ind_under_18 = Ind_0_17 / Ind,
pop_dens = Ind / area)

cell_big <- cell_big %>%
mutate(

Ind_0_17 = (Ind_0_3 + Ind_4_5 + Ind_6_10 + Ind_11_17),
prop_Ind_under_18 = Ind_0_17 / Ind,
pop_dens = Ind / area)

Summary statistics :
stargazer::stargazer(round(t(sapply(st_drop_geometry(cell_200m[,

c("prop_Ind_under_18", "pop_dens")]),
function(x) c(mean(x), sd(x), min(x), max(x)))), 2))

Table 4: Summary statistics for the two intensive variables created for pedagogical purposes
Intensive variables Description Mean Sd Min Max

prop_Ind_under_18 % of inhabitants under 18 years old 19.9 7.32 0 47.2
pop_dens Population density (Inhabitants / km2) 4 985 4 965 24 42 487

We define the labels of the extensive variables on one hand and the label of the intensive variable on other
hand:
var_extensive <- c("Men", "Men_pauv", "Men_1ind", "Men_5ind", "Men_prop",

"Men_fmp", "Ind_snv", "Men_surf", "Men_coll", "Men_mais",
"Log_av45", "Log_45_70", "Log_70_90", "Log_ap90", "Log_inc",
"Log_soc", "Ind_0_3", "Ind_4_5", "Ind_6_10", "Ind_11_17",
"Ind_18_24", "Ind_25_39", "Ind_40_54", "Ind_55_64", "Ind_65_79",

9

"Ind_80p", "Ind_inc", "Ind_0_17", "Ind", "area")
var_intensive <- c("prop_Ind_under_18", "pop_dens")

1.2.3 Variables to estimate

Inspired by the work of Nguyen et al. (2018), and thanks to this data set at the cell levels, our aim is to
determine the following covariates to explain the extreme right vote :

• population density (ratio of Ind to the area),

• percentage of individuals less than 18 (Sum of Ind_0_3, Ind_4_5, Ind_6_10, Ind_11_17
divided by Ind),

• percentage of individuals between 18 and 40 (Sum of Ind_18_24, Ind_25_39 divided by Ind),

• percentage of individuals between 40 and 64 (Sum of Ind_40_54, Ind_55_64 divided by Ind),

• percentage of individuals above 65 (Sum of Ind_65_79, Ind_80p divided by Ind),

• percentage of poor households (ratio of Men_pauv to Men),

• percentage of owners (ratio of Men_prop to Men),

• percentage of recent dwellings (ratio of Log_ap90 to Sum of Men_coll, Men_mais),

1.3 2nd kind of sources: data at the iris level

The data can be found here:

• Geographical boundaries: https://public.opendatasoft.com/explore/dataset/contours-iris-2015/expor
t/?flg=fr&sort=iris&refine.nom_com=Toulouse

• data set 1 which corresponds to the population in 2015: https://www.insee.fr/fr/statistiques/3627376
#consulter

• data set 2 which corresponds to the residents in 2015 (particularly the unemployed): https://www.inse
e.fr/fr/statistiques/2386631#consulter

We first import the data:
import the boundaries
iris <- read_sf("./data/iris/contours-iris-2015.geojson")
iris <- iris %>%

mutate(IRIS = paste0(insee_com, iris))
Import data 1
iris_don <- read_excel("./data/iris/base-ic-evol-struct-pop-2015.xls",

skip = 5)
Import data 2
iris_don_2 <- read_excel("./data/iris/base-ic-activite-residents-2013.xls",

skip = 5)
Filter the data
iris_don <- iris_don %>%

filter(COM == "31555")

iris_don_2 <- iris_don_2 %>%
filter(COM == "31555") %>%
select(P13_CHOM1564, P13_ACT1564, IRIS)

Merge polygons and data

10

https://public.opendatasoft.com/explore/dataset/contours-iris-2015/export/?flg=fr&sort=iris&refine.nom_com=Toulouse
https://public.opendatasoft.com/explore/dataset/contours-iris-2015/export/?flg=fr&sort=iris&refine.nom_com=Toulouse
https://www.insee.fr/fr/statistiques/3627376#consulter
https://www.insee.fr/fr/statistiques/3627376#consulter
https://www.insee.fr/fr/statistiques/2386631#consulter
https://www.insee.fr/fr/statistiques/2386631#consulter

iris <- merge(iris, iris_don, by = "IRIS")
iris <- merge(iris, iris_don_2, by = "IRIS")
Change the CRS
iris <- st_transform(iris, st_crs(bv_sample))

The number of sources is equal in that case to S = 153. The distribution of the area of the sources is equal to:
summary(st_area(iris))

Min. 1st Qu. Median Mean 3rd Qu. Max.
79843 237291 344533 770352 725516 8326068

Code to obtain Table 1.
area_df <- rbind(

target = round(as.numeric(summary(st_area(bv_sample))), 0),
cell_200m = round(as.numeric(summary(st_area(cell_200m))), 0),
cell_big = round(as.numeric(summary(st_area(cell_big))), 0),
iris = round(as.numeric(summary(st_area(iris))), 0)

)
stargazer::stargazer(area_df)

In the following figure, we zoom in on the maps to represent the few sources in red and the targets in dotted
line. It appears that the sources are in general larger than the targets, and in that case, the situation can be
considered as a disaggregation problem. In other terms, the variables on the targets should first be split to
the intersection zones, and finally to the sources.
plot(st_geometry(iris[40:50,]), lwd = 2, border = "red")
plot(st_geometry(iris), lwd = 2, border = "red", add = T)
plot(st_geometry(bv_sample),

add = T, col = scales::alpha("grey", alpha = 0.3), lty = 2)

The variables of interest in this data set are presented in Table 6. To produce the Table, we use:
stargazer::stargazer(round(t(sapply(st_drop_geometry(iris[, var_extensive_rp]),

function(x) c(mean(x), sd(x), min(x), max(x)))), 0))

These variables are all extensive.
var_extensive_rp <- c("C15_POP15P", "C15_POP15P_CS1", "C15_POP15P_CS2",

"C15_POP15P_CS3", "C15_POP15P_CS4", "C15_POP15P_CS5",
"C15_POP15P_CS6",
"P15_POP", "P15_POP_IMM", "P13_CHOM1564",
"P13_ACT1564")

11

Table 5: Descriptive statistics for the variables of interest (target variables) provided by INSEE at the iris
levels
Extensive variables Description Mean Sd Min Max

POP15P Inhabitants (up to 15 y.o.) 2 634 1 053 593 6 120
POP15P_CS1 Farmers (up to 15 y.o.) 1 2 0 11
POP15P_CS2 Self-employed workers (up to 15 y.o.) 73 38 10 236
POP15P_CS3 Highly qualified workers (up to 15 y.o.) 459 272 9 1 193
POP15P_CS4 Intermediate (up to 15 y.o.) 431 235 36 1 536
POP15P_CS5 Lower supervisory and technical (up to 15 y.o.) 400 216 69 1 525
POP15P_CS6 Workers/labour (up to 15 y.o.) 222 134 21 902

POP Population number 3 085 1 211 693 7 812
POP_IMM Immigrates 453 264 93 1 644
CHOM1564 Unemployed 269 124 40 731
ACT1564 Active people 1 562 677 205 4 152

Thanks to these variables, we aim to estimate for the targets the following variables that we suspect to be
related to the extreme right score:

• prop_unemploy: corresponding to the ratio of variable P13_CHOM1564 to P13_ACT1564

• prop_immi: corresponding to the ratio of variable P15_POP_IMM to P15_POP

• prop_csp_1: corresponding to the ratio of variable (C15_POP15P_CS1+C15_POP15P_CS2
to P15_POP)

• prop_csp_2: corresponding to the ratio of variable (C15_POP15P_CS3+C15_POP15P_CS4
to P15_POP)

• prop_csp_3: corresponding to the ratio of variable (C15_POP15P_CS5+C15_POP15P_CS6
to P15_POP)

Remark: In this work, we illustrate the dasymetric method control zone on this data set.

1.4 Auxiliary information

INSEE contains individual data concerning housing (see https://www.insee.fr/fr/metadonnees/definition/c1
815) that could be used to obtain information at the intersection levels, but it is not open access.

To obtain data at the intersection levels, we can use, for instance, road data (source : https://www.data.g
ouv.fr/fr/datasets/filaire-de-voirie-toulouse-metropole/) or OSM data. These data are not areal: they are
given at the point or the line level, but it is easy to transpose the data at the intersection levels. If data are
points, a user can obtain the information at the intersection levels by using the PIP method. For the road
data, we simply compute the length of the roads in the intersection zones.

By using these data, we make the assumption that the INSEE variables are correlated with the density of the
roads. In other terms, the more roads there are, the more people there are.
We import the boundaries of the road maps in Toulouse:
voieries <- read_sf("./data/voierie/filaire-de-voirie.geojson")
voieries <- st_transform(voieries, crs = st_crs(bv_sample))

Finally the variables we want to estimate are:

12

https://www.insee.fr/fr/metadonnees/definition/c1815
https://www.insee.fr/fr/metadonnees/definition/c1815
https://www.data.gouv.fr/fr/datasets/filaire-de-voirie-toulouse-metropole/
https://www.data.gouv.fr/fr/datasets/filaire-de-voirie-toulouse-metropole/

Table 6: Variables to estimate
Variable Source Description

pop_dens small cells Population density
prop_pour_hos small cells % of poor households
prop_owner small cells % of owners
prop_recent small cells % of recent dwellings

prop_Ind_18_40 small cells % of ind. between 18 and 40
prop_Ind_40_64 small cells % of ind. between 40 and 64
prop_Ind_up_65 small cells % of ind. up to 65
prop_unemploy iris % of unemployment

prop_immi iris % of immigrates
prop_csp_1 iris % of farmers and self-employed
prop_csp_2 iris % of intermediate and High. qualif.
prop_csp_3 iris % Lower supervisory and workers

1.5 Figure 1 in the book chapter

To get Figure 1:
temp <- st_intersection(

cell_200m[, "IdINSPIRE"], voieries[, "id_troncon"])

par(oma = c(0, 0, 0, 0), mar = c(0, 0, 0, 0))
plot(st_geometry(bv_sample))
legend("topleft", legend = "", title = "(a)", cex = 4, bty = "n")

(a)

13

plot(st_geometry(cell_200m))
legend("topleft", legend = "", title = "(b)", cex = 4, bty = "n")

(b)

plot(st_geometry(cell_big))
legend("topleft", legend = "", title = "(c)", cex = 4, bty = "n")

14

(c)

plot(st_geometry(iris))
legend("topleft", legend = "", title = "(d)", cex = 4, bty = "n")

(d)

15

plot(st_geometry(temp))
legend("topleft", legend = "", title = "(e)", cex = 4, bty = "n")

(e)

2 Point-in-polygon method

2.1 Illustration

In the following figure, when we consider the small cells as the sources, we observe that the targets (in
full lines) are larger than the sources (the cells in dashed lines). The method point-in-polygon is usually
appropriated for those kinds of geometries.

For this method, we consider the cell as a point by choosing the centroid of the cell to use the point-in-polygon
method (this is actually what is done by the INSEE, which has provided an R program for estimating the

16

variables at different target levels). The function st_centroid() permits us to transform the sources from cell
to points, and the function st_intersects() permits us to determine if a source intersects with a target or not.

2.2 Extensive variables

In the case of extensive variables, it is obvious that the aggregation consists simply in summing the values of
the points falling within the same target. For the case of the regular cells, it consists in executing this code:
convert the cell to points
cell_200m_as_points <- st_centroid(cell_200m)

intersection of points and polygons
temp_inters_cell_200m <- st_intersects(bv_sample,

cell_200m_as_points, sparse = F)

detect the null intersections
intersect_yes <- apply(temp_inters_cell_200m, 1, function (x) any(x != F))

aggregate the data
for (i in which(intersect_yes)) {

bv_sample[i, paste0(var_extensive, "_pip_cells")] <-
apply(st_drop_geometry(cell_200m_as_points)

[temp_inters_cell_200m[i,], var_extensive], 2, sum)
}

NA value for the targets with no values
bv_sample[!intersect_yes, paste0(var_extensive, "_pip_cells")] <- NA

We have performed the same estimates for the large cells, but we do not print the code because it is identical
to the previous.

2.2.1 Border effects

It could be the case that some points do not fall into any sources due to border effects, as presented in the
next figure. This is something which may occur when the targets are not nested into the sources, which is
the case in our data, especially for the large cells.
plot(st_geometry(cell_big_as_points[1:5,]))
plot(st_geometry(cell_big[1:5,]), add = T)
plot(st_geometry(bv_sample), add = T)

17

In that case, there are two options for the point-in-polygon method:

• exclude : the user supposes that these sources should not be included in the targets because they are
outside the space of targets. In that case, the sum of the extensive variables obtained for the targets
should be lower than the sum of the extensive variables obtained for the sources.

• include : the user supposes that every source should be associated with a target. It is possible to use
the algorithm of the nearest neighbour to attribute a source to its closest target.

In that second case, we use the following two steps:

• Identify the sources which do not fall into targets:
temp_inters_mat <- st_intersects(cell_big_as_points, bv_sample, sparse = T)
ind_with_no_inter <- which(sapply(temp_inters_mat, length) == 0)

• use function st_nearest_feature() from sf to detect the closest neighbour and add the values to the
concerned targets:

bv_sample[, paste0(var_extensive, "_pip_big_2")] <- bv_sample[,
paste0(var_extensive, "_pip_big")]

for (k in ind_with_no_inter) {
ind_k <- st_nearest_feature(cell_big_as_points[k,], bv_sample)
bv_sample[ind_k, paste0(var_extensive, "_pip_big_2")] <-

rowSums(cbind(
as.numeric(st_drop_geometry(bv_sample[ind_k, paste0(var_extensive, "_pip_big_2")])),
as.numeric(st_drop_geometry(cell_big_as_points)[k, var_extensive])
), na.rm = T)

}

We have done the same thing for the small cells, but we do not present the codes because they are similar to
the previous codes.

We compare the total number of inhabitants (variable Ind) in the sources and the targets with respect to
the method proposed above. In the case of exclude, the estimated number of inhabitants is lower than the
total number of inhabitants observed at the source level, whereas in the case of include, all inhabitants have
affected the targets.

For the small cells, the total number of individuals observed on the sources is equal to:
sum(cell_200m$Ind)

[1] 404497

The total number of individuals observed on the targets is equal to the total on sources when including and
slightly lower when excluding:
sum(bv_sample$Ind_pip_cells, na.rm = T)

[1] 403729
sum(bv_sample$Ind_pip_cells_2, na.rm = T)

[1] 404497

For the large cells, the total number of individuals observed on the sources is equal to:
sum(cell_big$Ind)

[1] 457031.5

Because the cells are larger, the total number of individuals observed on the targets is much lower when we
exclude the sources outside the delimited area of the sources.

18

sum(bv_sample$Ind_pip_big, na.rm = T)

[1] 409717
sum(bv_sample$Ind_pip_big_2, na.rm = T)

[1] 457031.5

2.2.2 Comparaison between small and big cells taken as sources

We compare the results obtained when considering the small cells or the large cells as sources. We have kept
the method which has excluded the points falling outside the zone delimited by the sources. We focus on the
variable number of inhabitants to obtain Figure 2 in the article.
ggplot(bv_sample) +

aes(x = Ind_pip_cells, y = Ind_pip_big) +
geom_point() +
xlim(0, 10000) +
ylim(0, 10000) +
geom_abline(intercept = 0, slope = 1) +
labs(x = "Estimates when Sources = Small cells", y = "Estimates when Sources = Big cells") +
theme_grey(base_size = 22)

0

2500

5000

7500

10000

0 2500 5000 7500 10000
Estimates when Sources = Small cellsE

st
im

at
es

 w
he

n
S

ou
rc

es
 =

 B
ig

 c
el

ls

We also represent in the following maps the estimates when the sources are the small (resp. large) cells.
library(tidyr)
nc2 <- bv_sample %>% select(Ind_pip_cells, Ind_pip_big, geometry) %>%

rename(Ind_pip_1 = Ind_pip_cells,
Ind_pip_2 = Ind_pip_big) %>%

gather(VAR, Ind_pip_, -geometry)
ggplot() +

geom_sf(data = nc2, aes(fill = Ind_pip_)) +
scale_fill_gradient('Inhab.', low='#ffffff', high = '#007acc', limits = c(0, 10000)) +
facet_wrap(~VAR, ncol = 2, labeller = labeller(VAR =

c("Ind_pip_1" = "Estimates when Sources = small cells",
"Ind_pip_2" = "Estimates when Sources = big cells")

19

)) +
annotation_scale(location = "bl", width_hint = 0.5) +

theme_grey(base_size = 22)

6 km 6 km

Estimates when Sources = small cellsEstimates when Sources = big cells

1.35°E 1.4°E 1.45°E 1.5°E1.35°E 1.4°E 1.45°E 1.5°E

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

0
2500
5000
7500
10000

Inhab.

2.3 Intensive variables

2.3.1 The extensive variables defining the intensive variable are known

Once the aggregation has been conducted on the extensive variables, if an intensive variable is defined
as the ratio of two extensive variables, it is then possible to produce the ratio of the two estimates. For
example, we estimate the PIP method for the two variables number of inhabitants lower than 18 years old
(prop_Ind_under_18) and population density (pop_dens):
bv_sample <- bv_sample %>%

mutate(
prop_Ind_under_18_pip_cells = Ind_0_17_pip_cells / Ind_pip_cells ,
pop_dens_pip_cells = Ind_pip_cells / area_pip_cells,
prop_Ind_under_18_pip_big = Ind_0_17_pip_big / Ind_pip_big,
pop_dens_pip_big = Ind_pip_big / area_pip_big

)

We represent the estimates of the two intensive variables computed when the sources correspond to the small
cells.
ggplot(data = bv_sample) +

geom_sf(aes(fill = pop_dens_pip_cells)) +
labs(fill = "Pop Dens") +

annotation_scale(location = "bl", width_hint = 0.5)

20

6 km

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

1.35°E 1.4°E 1.45°E 1.5°E

5000

10000

15000

20000

Pop Dens

ggplot(data = bv_sample) +
geom_sf(aes(fill = prop_Ind_under_18_pip_cells)) +

annotation_scale(location = "bl", width_hint = 0.5) +
labs(fill = 'Pct < 18')

21

6 km

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

1.35°E 1.4°E 1.45°E 1.5°E

0.10

0.15

0.20

0.25

0.30

Pct < 18

2.3.2 The extensive variables defining the intensive variable are unknown

In the following codes, we estimate the intensive variables without considering the weights and we compare
them to those obtained previously. Hence, we remark that with no weight, the estimates provide different
results.

In the case of the small cells taken as sources, even if the results are correlated, the estimates are slightly
different. Figure 3 in the article is obtained.
aggregate the data
for (i in 1:nrow(bv_sample)) {

bv_sample[i, paste0(var_intensive, "_pip_cells_bad")] <-
apply(st_drop_geometry(cell_200m)

[temp_inters_cell_200m[i,], var_intensive], 2, mean)
}
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_pip_cells, y = prop_Ind_under_18_pip_cells_bad) +
geom_point() +
labs(title = "Estimates of people < 18 (sources = small cells)",

x = "extensive variables are known",
y = "extensive variables are unknown") +

xlim(0.1, 0.4) +
ylim(0.1, 0.4) +
geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

22

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4
extensive variables are knownex

te
ns

iv
e

va
ria

bl
es

 a
re

 u
nk

no
w

n Estimates of people < 18 (sources = small cells)

For the large cells, it seems that there are fewer differences. This could be due to the fact that the number of
sources falling inside the targets is lower than for the small cells. Indeed, let us suppose that exactly one
source falls inside one target. In that case, the two methods would be equivalent.
aggregate the data
for (i in 1:nrow(bv_sample)) {

bv_sample[i, paste0(var_intensive, "_pip_big_bad")] <-
apply(st_drop_geometry(cell_big)

[temp_inters_big[i,], var_intensive], 2, mean)
}
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_pip_big, y = prop_Ind_under_18_pip_big_bad) +
geom_point() +
labs(title = "Estimates of people < 18 (sources = Big cells)",

x = "extensive variables are known",
y = "extensive variables are unknown") +

xlim(0.1, 0.4) +
ylim(0.1, 0.4) +
geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

23

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4
extensive variables are knownex

te
ns

iv
e

va
ria

bl
es

 a
re

 u
nk

no
w

n Estimates of people < 18 (sources = Big cells)

2.4 Limitation of the point-in polygon method

The limitations of this method are illustrated in Figure 4 in the book chapter.

• In the first figure, approximately 75% of a source (represented in red) is falling within the target in
green. However, as the centroid is falling into the target neighbour, the number of households (486
hereafter) is given for the target neighbour. In this example, the sizes of the targets and the sources are
close. In that case, it is preferable to use another method, like DAW or DAX.

Household: 486

• In the second figure, we can see that the estimates in the target in green equal 0, because there are no
red points falling inside the green polygon. One more time, this is due to the fact that the large cells
(1km× 1km and 2km× 2km) are larger than the targets.

24

In our application, 57 (resp. 2) targets have not been estimated when using the large (resp. small) cells as
sources.
length(which(is.na(bv_sample[, "pop_dens_pip_big"])))

[1] 57

3 Areal weighting interpolation (DAW) method

3.1 Extensive variable

3.1.1 Border effect issue

As for the point-in-polygon method, the issue of border effect still occurs. For example, if a source intersects
30% with target 1, 40% with target 2, and 30% with an empty zone, how should we disaggregate the variable
x = 100 inhabitants? There are two possibilities :

• exclude : 30 inhabitants are affected for target 1, 40 inhabitants are affected for target 2, and 30
inhabitants are not affected. In that case, the sum of x on the targets will be lower than the sum of x
on the sources.

• include : 30
30+40 × 100 = 42.86 inhabitants are affected for target 1 and 40

30+40 × 100 = 57.14 inhabitants
are affected for target 2.

In our illustration, we compare the two options. We present here the codes in the case of the small cells taken
as sources:
intersection of sources and targets
temp_inters_cell_200m <- st_intersection(bv_sample[, "BUREAU"],

cell_200m[, c(var_extensive, "IdINSPIRE")])

compute the areas of the intersections divided by the area of the source
temp_inters_cell_200m$Area_intersect <-

as.numeric(st_area(temp_inters_cell_200m)) / 1000 ^ 2

compute the sum of the intersected zones per source
sum_intersect_cell_200m <- temp_inters_cell_200m %>%

select(Area_intersect, IdINSPIRE) %>%
group_by(IdINSPIRE) %>%
summarise(sum_area = sum(Area_intersect))

`summarise()` ungrouping output (override with `.groups` argument)

25

merge with the interesected zones
temp_inters_cell_200m <- merge(temp_inters_cell_200m,

st_drop_geometry(sum_intersect_cell_200m), by = "IdINSPIRE")
temp_inters_cell_200m$Area_share_1 <- temp_inters_cell_200m$Area_intersect /

temp_inters_cell_200m$area
temp_inters_cell_200m$Area_share_2 <- temp_inters_cell_200m$Area_intersect /

temp_inters_cell_200m$sum_area

Multiply the variables by the proportions
* for method 1
temp_inters_cell_200m[, paste0(var_extensive, "_1")] <-

sapply(st_drop_geometry(temp_inters_cell_200m[, var_extensive]),
function(x) x * temp_inters_cell_200m$Area_share_1)

Aggregate the variables by target
temp_targets <- aggregate(temp_inters_cell_200m[, paste0(var_extensive, "_1")],

by = list(temp_inters_cell_200m$BUREAU),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename_at(vars(paste0(var_extensive, "_1")), ~
paste0(var_extensive, "_daw_cells"))

Merge with the targets
bv_sample <- merge(bv_sample, st_drop_geometry(temp_targets),

by.x = "BUREAU", by.y = "Group.1")
* for method 2
temp_inters_cell_200m[, paste0(var_extensive, "_2")] <- sapply(

st_drop_geometry(temp_inters_cell_200m[, var_extensive]),
function(x) x * temp_inters_cell_200m$Area_share_2)

Aggregate the variables by target
temp_targets <- aggregate(temp_inters_cell_200m[, paste0(var_extensive, "_2")],

by = list(temp_inters_cell_200m$BUREAU),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename_at(vars(paste0(var_extensive, "_2")), ~
paste0(var_extensive, "_daw_cells_2"))

Merge with the targets
bv_sample <- merge(bv_sample, st_drop_geometry(temp_targets),

by.x = "BUREAU", by.y = "Group.1")

We have done the same thing for the large cells but we do not present the codes here as it is the same than
the one seen previously.

`summarise()` ungrouping output (override with `.groups` argument)

3.1.2 Comparaison between the two sources of data

Now, we compare the DAW results with respect to the choice of the sources (small cells or large cells). Few
observations fit with the regression line y = x, but we observe differences between the two estimates. As for
the PIP method, we recommend to use the sources with the most detailed geographical level if possible.
ggplot(bv_sample) +

aes(x = Men_daw_cells, y = Men_daw_big) +

26

geom_point() +
labs(title = "Estimates of the number of households",

x = "Sources = small cells",
y = "Sources = big cells") +

geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

0

500

1000

1500

2000

2500

0 500 1000 1500
Sources = small cells

S
ou

rc
es

 =
 b

ig
 c

el
ls

Estimates of the number of households

ggplot(bv_sample) +
aes(x = Log_soc_daw_cells, y = Log_soc_daw_big) +
geom_point() +
labs(title = "Estimates of the number of social accommodation",

x = "Sources = small cells",
y = "Sources = big cells") +

geom_abline(intercept = 0, slope = 1)

0

200

400

600

800

0 200 400 600 800
Sources = small cells

S
ou

rc
es

 =
 b

ig
 c

el
ls

Estimates of the number of social accommodation

27

3.2 Comparaison between PIP and DAW

We compare the results obtained with point-in-polygon and with DAW for the variable number of households.
First, we present the figure in the case where the large cells have been utilized as sources to produce Figure 5
in the book chapter.
ggplot(bv_sample) +

aes(x = Men_pip_big, y = Men_daw_big) +
labs(title = "Households estimates (sources = big cells)",

x = "Method = PIP",
y = "Method = DAW") +

xlim(0, 4000) +
ylim(0, 4000) +
geom_point() +
geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

0

1000

2000

3000

4000

0 1000 2000 3000 4000
Method = PIP

M
et

ho
d

=
 D

A
W

Households estimates (sources = big cells)

Hence, it appears that there are extensive differences. It seems that the DAW method corrects the approxi-
mation made by the PIP method (1 source is affected by the 1 and only target).

We now look at the differences in the case of the small cells taken as sources:
ggplot(bv_sample) +

aes(x = Men_pip_cells, y = Men_daw_cells) +
labs(title = "Households estimates (sources = small cells)",

x = "Method = PIP",
y = "Method = DAW") +

xlim(0, 4000) +
ylim(0, 4000) +
geom_point() +
geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

28

0

1000

2000

3000

4000

0 1000 2000 3000 4000
Method = PIP

M
et

ho
d

=
 D

A
W

Households estimates (sources = small cells)

In the case of small cells, the differences are less obvious because the approximation made by the PIP method
(1 source is affected by the 1 and only target) has less impact when the sources are smaller than the targets,
because 1 source has more chance to fall fully inside 1 target. In other terms, the smaller the sources are as
compared to the targets, the more similar the PIP and DAW methods should be.

Remark: The DAW method has been implemented by Pebsema (2018) in function st_interpolate_aw(). It
can be used like this. The scatter plot shows that the program coincides with what we have done in the case
where we exclude the non-intersected zones. However, st_interpolate_aw() does not permit to keeping the
identification of the sources and targets which define the intersected zones.
a1 <- st_interpolate_aw(cell_200m["Men"], bv_sample, extensive = TRUE)
plot(a1Men, bv_sampleMen_daw_cells,

xlab = "st_interpolate_aw() function",
ylab = "R codes presented in this chapter")

0 500 1000 1500

0
50

0
10

00
15

00

st_interpolate_aw() function

R
 c

od
es

 p
re

se
nt

ed
 in

 th
is

 c
ha

pt
er

29

3.3 Intensive variable

3.3.1 Extensive variables are known

If the extensive variables which define the intensive variables are known, the DAW method is applied first on
the extensive variable to obtain the estimates at the target levels, and then intensive variables are re-created
on the estimates. For example, we estimate the DAW method for the two variables number of inhabitants
under 18 years old (prop_Ind_under_18) and population density (pop_dens):
bv_sample <- bv_sample %>%

mutate(
prop_Ind_under_18_daw_cells = Ind_0_17_daw_cells / Ind_daw_cells,
pop_dens_daw_cells = Ind_daw_cells / area_daw_cells,
prop_Ind_under_18_daw_big = Ind_0_17_daw_big / Ind_daw_big,
pop_dens_daw_big = Ind_daw_big / area_daw_big

)

We represent the estimates of the two variables by using the small cells as sources.
ggplot(data = bv_sample) +

geom_sf(aes(fill = pop_dens_daw_cells)) +
labs(fill = "Pop Dens") +

annotation_scale(location = "bl", width_hint = 0.5)

6 km

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

1.35°E 1.4°E 1.45°E 1.5°E

5000

10000

15000

Pop Dens

ggplot(data = bv_sample) +
geom_sf(aes(fill = prop_Ind_under_18_daw_cells)) +

annotation_scale(location = "bl", width_hint = 0.5) +
labs(fill = 'Age < 18')

30

6 km

43.54°N

43.56°N

43.58°N

43.6°N

43.62°N

43.64°N

43.66°N

1.35°E 1.4°E 1.45°E 1.5°E

0.15

0.20

0.25

0.30

Age < 18

3.3.2 Extensive variables are unknown

If it is not the case and the extensive variables are not known, we suppose that Ŷs,t = Ys. Then, Ŷt =
∑ |As,t|

|Tt| Ys.
intersection of sources and targets
temp_inters_cells <- st_intersection(bv_sample[, "BUREAU"],

cell_200m[, c(var_intensive, "area", "IdINSPIRE")])

compute the areas of the intersections divided by the area of the source
temp_inters_cells$Area_intersect <- as.numeric(st_area(temp_inters_cells)) /

1000 ^ 2

compute the sum of the intersected zones per targets
sum_targets <- bv_sample %>%

mutate(sum_area = as.numeric(st_area(bv_sample)) / 1000 ^ 2)

merge with the intersected zones
temp_inters_cells <- merge(temp_inters_cells,

st_drop_geometry(sum_targets), by = "BUREAU")
temp_inters_cells$Area_share <- temp_inters_cells$Area_intersect /

temp_inters_cells$sum_area
temp_inters_cells[, var_intensive] <- sapply(

st_drop_geometry(temp_inters_cells[, var_intensive]),
function(x) x * temp_inters_cells$Area_share)

Aggregate the variables by target
temp_targets <- aggregate(temp_inters_cells[, var_intensive],

31

by = list(temp_inters_cells$BUREAU),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename_at(vars(var_intensive), ~ paste0(var_intensive, "_daw_cells_bad"))

Merge with the targets
bv_sample <- merge(bv_sample, st_drop_geometry(temp_targets),

by.x = "BUREAU", by.y = "Group.1")

We have done the same things when the sources are the large cells, but we do not present the codes because
they are the same as the ones presented above.

3.3.3 Comparing the two methods

3.3.3.1 Sources = small cells We compare the estimates when using “extensive variables are known”
and “extensive variables are unknown”. We do this first for the case where the sources are the small cells,
and for the population density variable. We observe that the two methods seem similar. We create Figure 6
in the article through these actions.
ggplot(bv_sample) +

aes(x = pop_dens_daw_cells, y = pop_dens_daw_cells_bad) +
geom_point() +
labs(title = "(a) DAW estimates for pop density \n (sources = small cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

0

5000

10000

15000

0 5000 10000 15000
Extensive variables are knownE

xt
en

si
ve

 v
ar

ia
bl

es
 a

re
 u

nk
no

w
n (a) DAW estimates for pop density

 (sources = small cells)

We now find the proportion of people less than 18 years old. The method “extensive variables are unknown”
seems clearly underestimated for some targets.
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_daw_cells, y = prop_Ind_under_18_daw_cells_bad) +
geom_point() +
labs(title = "(b) DAW estimates for % of people < 18 \n (sources = small cells)",

32

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

0.1

0.2

0.3

0.10 0.15 0.20 0.25 0.30 0.35
Extensive variables are knownE

xt
en

si
ve

 v
ar

ia
bl

es
 a

re
 u

nk
no

w
n (b) DAW estimates for % of people < 18

 (sources = small cells)

We try to better understand what is happening for these cases. We have represented in red a target where
the percentage of young people is estimated as 34.9% with the case “extensive variables are known” and 6.7%
with the case “extensive variables are unknown”.
op <- par(oma= c(3, 2, 1.5, 0), mar = c(0, 0, 0.7, 0))
plot(st_geometry(bv_sample[187,]), border = "red")
plot(st_geometry(bv_sample), border = "black", add = T, lty = 2)
plot(st_geometry(bv_sample[187,]), border = "red", add = T)
plot(st_geometry(cell_200m), border = "lightblue", add = T)
title("(c)", cex.main = 3, line = -1)

33

(c)

par(op)

When we consider an intensive variable which does not depend on the area (like the proportion of people
less than 18 years old), the formula creates biases. One issue should consist in replacing the term |Tt| by∑

s |As,t|. This is actually what is done by the function st_interpolate_aw() with the option extensive=F.
a1 <- st_interpolate_aw(cell_200m["prop_Ind_under_18"],

bv_sample, extensive = FALSE)
bv_sample$prop_Ind_under_18_daw_sf <- a1$prop_Ind_under_18

In that case, we observe fewer differences between the cases “extensive variables are known” or “extensive
variables are unknown”.
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_daw_cells, y = prop_Ind_under_18_daw_sf) +
geom_point() +
labs(title = "DAX method for percent of young people (sources = small cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1)

34

0.10

0.15

0.20

0.25

0.30

0.10 0.15 0.20 0.25 0.30 0.35
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n
DAX method for percent of young people (sources = small cells)

This is actually what is performed by the function st_interpolate_aw() with the option extensive=F.

3.3.3.2 Sources = big cells When the sources are the large cells, the correlation seems stronger. This
confirms the remark which has been produced with the PIP method. When the variable is intensive, if sources
and targets have more or less the same size, the method “extensive variables are known” vs. “extensive
variables are unknown” should give similar results. For example, for the population density:
ggplot(bv_sample) +

aes(x = pop_dens_daw_big, y = pop_dens_daw_big_bad) +
geom_point() +
labs(title = "DAX method for pop density (sources = big cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1)

0

5000

10000

15000

0 5000 10000 15000
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n

DAX method for pop density (sources = big cells)

For the variable “percentage of people less than 18 years old”, we use the function st_interpolate_aw() with
the option extensive=F.

35

a1 <- st_interpolate_aw(cell_big["prop_Ind_under_18"],
bv_sample, extensive = FALSE)

bv_sample$prop_Ind_under_18_daw_big_sf <- a1$prop_Ind_under_18

The two methods “extensive variables are known” vs. “extensive variables are unknown” are also correlated.
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_daw_big, y = prop_Ind_under_18_daw_big_sf) +
geom_point() +
labs(title = "DAX method (sources = big cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1)

0.10

0.15

0.20

0.25

0.30

0.15 0.20 0.25 0.30
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n

DAX method (sources = big cells)

4 Dasymetric method with auxiliary variable X (DAX)

4.1 Extensive variables

Here, we do not take into account the sources which do not intersect with any target (in other terms, we keep
the case exclude seen previously).

We present here the codes used in the DAX method when the sources are the small cells.
We find the intersections between the following:
- (intersection of sources and targets) and road maps
intersection of sources and targets
temp_inters_cells <- st_intersection(bv_sample[, "BUREAU"],

cell_200m[, c(var_extensive, "IdINSPIRE")])
temp_inters_sourcestargets_roads <- st_intersection(

temp_inters_cells[, c("BUREAU", "IdINSPIRE")],
voieries[, "id_troncon"])

compute the length of the roads
temp_inters_sourcestargets_roads$length <-

as.numeric(st_length(temp_inters_sourcestargets_roads))

36

aggregate the lengths by sources
temp_inters_sources_roads <- st_intersection(

cell_200m[, "IdINSPIRE"], voieries[, "id_troncon"])
temp_inters_sources_roads$length <-

as.numeric(st_length(temp_inters_sources_roads))
temp_sources <- aggregate(temp_inters_sources_roads[, "length"],

by = list(temp_inters_sources_roads$IdINSPIRE),
FUN = sum)

temp_sources <- temp_sources %>%
rename(length_s = length)

aggregate the lengths by (intersection of sources and targets)
temp_intersects <- aggregate(temp_inters_sourcestargets_roads[, "length"],

by = list(temp_inters_sourcestargets_roads$BUREAU,
temp_inters_sourcestargets_roads$IdINSPIRE),

FUN = sum)
add the variable Xst
temp_inters_cells <- merge(temp_inters_cells,

st_drop_geometry(temp_intersects),
by.x = c("BUREAU", "IdINSPIRE"),
by.y = c("Group.1", "Group.2"))

add the variable Xs
temp_inters_cells <- merge(temp_inters_cells,

st_drop_geometry(temp_sources),
by.x = "IdINSPIRE",
by.y = "Group.1")

temp_inters_cells <- temp_inters_cells %>%
mutate(ratio = length / length_s)

apply the ratio with extensive variables
* for method 2
temp_inters_cells[, paste0(var_extensive)] <- sapply(

st_drop_geometry(temp_inters_cells[, var_extensive]),
function(x) x * temp_inters_cells$ratio)

Aggregate the variables by target
temp_targets <- aggregate(temp_inters_cells[, var_extensive], by =

list(temp_inters_cells$BUREAU),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename_at(vars(var_extensive), ~ paste0(var_extensive, "_dax_cells"))

Merge with the targets
bv_sample <- merge(bv_sample, st_drop_geometry(temp_targets),

by.x = "BUREAU", by.y = "Group.1")

We have performed the same computations for the large cells taken as sources, but we do not present the
codes here because they are similar to previous codes.

4.1.1 Comparaison between the two sources of data

We compare the DAX results with respect to the choice of the sources (small cells or large cells) for the variable
“Number of households”. Few observations fit with the regression line y = x, but we observe differences

37

between the two estimates. As for the PIP or DAW method, we recommend using the sources with the most
detailed geographical level.
ggplot(bv_sample) +

aes(x = Men_dax_cells, y = Men_dax_big) +
geom_point() +
labs(title = "DAX estimates of the number of households",

x = "Sources = small cells",
y = "Sources = big cells") +

geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

0

500

1000

1500

2000

0 500 1000 1500
Sources = small cells

S
ou

rc
es

 =
 b

ig
 c

el
ls

DAX estimates of the number of households

4.2 Comparaison between DAW and DAX

We compare the results obtained with DAX and with DAW on the variable number of households. First, we
present the figure in the case where the small cells have been taken as sources. It corresponds to Figure 7 in
the article.
ggplot(bv_sample) +

aes(x = Men_dax_cells, y = Men_daw_cells) +
labs(title = "(a) Households estimates \n (sources = small cells)",

x = "Method = DAX",
y = "Method = DAW") +

geom_point() +
xlim(0, 2500) +
ylim(0, 2500) +
geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

38

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500
Method = DAX

M
et

ho
d

=
 D

A
W

(a) Households estimates
 (sources = small cells)

DAW and DAX seem to produce similar results. We now look at the case of the large cells taken as sources.
ggplot(bv_sample) +

aes(x = Men_dax_big, y = Men_daw_big) +
labs(title = "(b) Households estimates \n (sources = big cells)",

x = "Method = DAX",
y = "Method = DAW") +

xlim(0, 2500) +
ylim(0, 2500) +
geom_point() +
geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500
Method = DAX

M
et

ho
d

=
 D

A
W

(b) Households estimates
 (sources = big cells)

In that case, it appears that the variability between the two methods is higher. Let us try to better understand
the differences between the two methods. We have represented in red the target which has the higher difference
between DAX and DAW estimates. For this target, the value estimated is 1460 with DAX and 2376 with
DAW. We observe that the density of the roads is very low in the target, whereas the area covered by the
target is important. This explains why the value is underestimated with DAX as compared to the DAW
method.

39

op <- par(oma= c(3, 2, 1.5, 0), mar = c(0, 0, 0.7, 0))
plot(st_geometry(bv_sample[70,]), border = "red")
plot(st_geometry(bv_sample), border = "black", add = T, lty = 2)
plot(st_geometry(bv_sample[70,]), border = "red", add = T)
plot(st_geometry(cell_big), border = "lightblue", add = T)
text(st_coordinates(st_centroid(cell_big))[, 1],

st_coordinates(st_centroid(cell_big))[, 2],
cell_big$Men, cex = 3)

plot(st_geometry(voieries), col = "grey", add = T)
title("(c)", cex.main = 3, line = -1)

1795.9 837

2572.1
989.1 2293 3206 2735

1752.9
2324.1 2742.9

1897028206
5810694

11521538512137110228101107501492109221173186788580958611515210376
28117591126108146417166126

5521218722087
26721728017513636739270159

259178196401104
2993353031842597511773226

2749211597169
316130224176138213188103128

195229158159156
330222

(c)

4.3 Intensive variables

4.3.1 Extensive variables are known

If the extensive variables which define the intensive variables are known, the DAW method is applied first on
the extensive variable to obtain the estimates at the target levels, and then intensive variables are re-created
for the estimates.
bv_sample <- bv_sample %>%

mutate(
prop_Ind_under_18_dax_cells = Ind_0_17_dax_cells / Ind_dax_cells,
pop_dens_dax_cells = Ind_dax_cells / area_dax_cells,
prop_Ind_under_18_dax_big = Ind_0_17_dax_big / Ind_dax_big,
pop_dens_dax_big = Ind_dax_big / area_dax_big

)

4.3.2 Intensive variable

This works similarly to the DAW method except that we replace the area by the auxiliary information. The
formula is Ŷt =

∑ xs,t∑
s

xst
Ys. Note that we have chosen

∑
s xst instead of xt for the reason that we have seen

in the DAW section.
We find the intersections between the following:
- (intersection of sources and targets) and road maps
intersection of sources and targets

40

temp_inters_cells <- st_intersection(bv_sample[, "BUREAU"],
cell_200m[, c(var_intensive, "IdINSPIRE")])

temp_inters_sourcestargets_roads <- st_intersection(
temp_inters_cells[, c("BUREAU", "IdINSPIRE")],
voieries[, "id_troncon"])

compute the length of the roads
temp_inters_sourcestargets_roads$length <-

as.numeric(st_length(temp_inters_sourcestargets_roads))

aggregate the lengths by targets
temp_targets <- aggregate(temp_inters_sourcestargets_roads[, "length"],

by = list(temp_inters_sourcestargets_roads$BUREAU),
sum)

temp_targets <- temp_targets %>%
rename(length_t = length)

aggregate the lengths by (intersection of sources and targets)
temp_intersects <- aggregate(temp_inters_sourcestargets_roads[, "length"],

by = list(temp_inters_sourcestargets_roads$BUREAU,
temp_inters_sourcestargets_roads$IdINSPIRE),

FUN = sum)
add the variable Xst
temp_inters_cells <- merge(temp_inters_cells, st_drop_geometry(temp_intersects),

by.x = c("BUREAU", "IdINSPIRE"),
by.y = c("Group.1", "Group.2"))

add the variable Xs
temp_inters_cells <- merge(temp_inters_cells, st_drop_geometry(temp_targets),

by.x = "BUREAU",
by.y = "Group.1")

temp_inters_cells <- temp_inters_cells %>%
mutate(ratio = length / length_t)

apply the ratio with extensive variables
temp_inters_cells[, paste0(var_intensive)] <- sapply(

st_drop_geometry(temp_inters_cells[, var_intensive]),
function(x) x * temp_inters_cells$ratio)

Aggregate the variables by target
temp_targets <- aggregate(temp_inters_cells[, var_intensive], by =

list(temp_inters_cells$BUREAU),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename_at(vars(var_intensive), ~ paste0(var_intensive, "_dax_cells_bad"))

Merge with the targets
bv_sample <- merge(bv_sample, st_drop_geometry(temp_targets),

by.x = "BUREAU",
by.y = "Group.1")

We have performed the same computations for the small cells taken as sources, but we do not present the
codes here because they are similar to what has been done previously.

41

4.3.3 Comparaison between the two methods

4.3.3.1 Sources = small cells We compare the estimates when using “extensive variables are known”
versus “extensive variables are unknown”. We do this first for the variable population density.
ggplot(bv_sample) +

aes(x = pop_dens_dax_cells, y = pop_dens_dax_cells_bad) +
geom_point() +
labs(title = "Population density DAX method (sources = small cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1)

0

5000

10000

15000

0 5000 10000 15000
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n

Population density DAX method (sources = small cells)

We remark that the scatter plot fits well around the curve y = x. The same remark can be offered for the
variable “Percentage of people under 18” even if there is more variability here.
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_dax_cells, y = prop_Ind_under_18_dax_cells_bad) +
geom_point() +
labs(title = "People < 18 with DAX method (sources = small cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1)

42

0.10

0.15

0.20

0.25

0.30

0.35

0.10 0.15 0.20 0.25 0.30 0.35
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n
People < 18 with DAX method (sources = small cells)

4.3.3.2 Sources = large cells When the sources are the large cells, the two methods “extensive variables
are known” and “extensive variables are unknown” fit quite well.
ggplot(bv_sample) +

aes(x = pop_dens_dax_big, y = pop_dens_dax_big_bad) +
geom_point() +
labs(title = "Population density with DAX method (sources = big cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

geom_abline(intercept = 0, slope = 1)

0

5000

10000

15000

0 5000 10000 15000
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n

Population density with DAX method (sources = big cells)

ggplot(bv_sample) +
aes(x = prop_Ind_under_18_dax_big, y = prop_Ind_under_18_dax_big_bad) +
geom_point() +
labs(title = "People < 18 with DAX method (sources = big cells)",

x = "Extensive variables are known",
y = "Extensive variables are unknown") +

43

geom_abline(intercept = 0, slope = 1)

0.10

0.15

0.20

0.25

0.30

0.10 0.15 0.20 0.25 0.30
Extensive variables are known

E
xt

en
si

ve
 v

ar
ia

bl
es

 a
re

 u
nk

no
w

n

People < 18 with DAX method (sources = big cells)

4.4 Comparaison between DAX and DAW

For the large cells:
ggplot(bv_sample) +

aes(x = prop_Ind_under_18_dax_big, y = prop_Ind_under_18_daw_big) +
geom_point() +
labs(title = "People < 18 (sources = big cells)",

x = "DAX estimates",
y = "DAW estimates") +

geom_abline(intercept = 0, slope = 1)

0.15

0.20

0.25

0.30

0.10 0.15 0.20 0.25 0.30
DAX estimates

D
A

W
 e

st
im

at
es

People < 18 (sources = big cells)

For the small cells:

44

ggplot(bv_sample) +
aes(x = prop_Ind_under_18_dax_cells, y = prop_Ind_under_18_daw_cells) +
geom_point() +
labs(title = "People < 18 (sources = small cells)",

x = "DAX estimates",
y = "DAW estimates") +

geom_abline(intercept = 0, slope = 1)

0.10

0.15

0.20

0.25

0.30

0.35

0.10 0.15 0.20 0.25 0.30 0.35
DAX estimates

D
A

W
 e

st
im

at
es

People < 18 (sources = small cells)

5 Dasymetric method with control zones

5.1 Step 1: DAW method

The aim is to apply the DAW method by using the control zones as sources and the intersections between
iris and polling places as targets. The variable of interest is the “number of individuals”. We first define the
geometries of the intersections between iris and polling places:
The targets
control <- st_intersection(bv_sample[, "BUREAU"],

iris[, c(var_extensive_rp, "IRIS")])

Warning: attribute variables are assumed to be spatially constant throughout all
geometries
control <- control %>%

mutate(ID = paste0(IRIS, "_", BUREAU))

We can then apply the DAW method by considering the small cells as the sources and the intersections
between iris and polling places as the targets.
intersection of sources and targets
temp_inters_cell_200m <- st_intersection(control[, "ID"],

cell_200m[, c("Ind", "area", "IdINSPIRE")])

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

45

compute the areas of the intersections divided by the area of the source
temp_inters_cell_200m$Area_intersect <-

as.numeric(st_area(temp_inters_cell_200m)) / 1000 ^ 2

compute the sum of the intersected zones per source
sum_intersect_cell_200m <- temp_inters_cell_200m %>%

select(Area_intersect, IdINSPIRE) %>%
group_by(IdINSPIRE) %>%
summarise(sum_area = sum(Area_intersect))

`summarise()` ungrouping output (override with `.groups` argument)
merge with the interesected zones
temp_inters_cell_200m <- merge(temp_inters_cell_200m,

st_drop_geometry(sum_intersect_cell_200m),
by = "IdINSPIRE")

temp_inters_cell_200m$Area_share_1 <- temp_inters_cell_200m$Area_intersect /
temp_inters_cell_200m$area

Multiply the variables by the proportions
temp_inters_cell_200m[, "Ind"] <-

sapply(st_drop_geometry(temp_inters_cell_200m[, "Ind"]),
function(x) x * temp_inters_cell_200m$Area_share_1)

Aggregate the variables by target
temp_targets <- aggregate(temp_inters_cell_200m[, "Ind"],

by = list(temp_inters_cell_200m$ID),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename(Ind_daw = Ind)

Merge with the targets
control <- merge(control, st_drop_geometry(temp_targets),

by.x = "ID", by.y = "Group.1")

5.2 Step 2: DAX method

The aim is to use the iris as sources and the polling places as targets. We use here the auxiliary information
created in step 1: the number of inhabitants estimated at the intersection levels.

We apply these methods on the extensive variables.
aggregate the X by sources
control_sources <- aggregate(control[, "Ind_daw"],

by = list(control$IRIS),
FUN = sum)

control_sources <- control_sources %>%
rename(Ind_daw_s = Ind_daw)

aggregate the lengths by (intersection of sources and targets)
add the variable Xs
control <- merge(control, st_drop_geometry(control_sources),

by.x = "IRIS",

46

by.y = "Group.1")
control <- control %>%

mutate(ratio = Ind_daw / Ind_daw_s)

apply the ratio with extensive variables
control[, paste0(var_extensive_rp)] <- sapply(

st_drop_geometry(control[, var_extensive_rp]),
function(x) x * control$ratio)

Aggregate the variables by target
temp_targets <- aggregate(control[, var_extensive_rp], by =

list(control$BUREAU),
FUN = sum)

Rename the variables
temp_targets <- temp_targets %>%

rename_at(vars(var_extensive_rp), ~ paste0(var_extensive_rp, "_dac"))

Note: Using an external vector in selections is ambiguous.
i Use `all_of(var_extensive_rp)` instead of `var_extensive_rp` to silence this message.
i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
This message is displayed once per session.
Merge with the targets
bv_sample <- merge(bv_sample, st_drop_geometry(temp_targets),

by.x = "BUREAU",
by.y = "Group.1")

5.2.1 Comparaison between DAC and DAX

We have also computed the estimates for the DAX method. We do not present the codes because they are
similar to those presented in the previous section.
source("codes_DAX_iris.R")

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

Warning: attribute variables are assumed to be spatially constant throughout all
geometries

We compare the results for the two methods DAX and DAW for the variable “number of unemployed persons”
to obtain Figure 8 in the article.
Comparaison DAC VS DAX
ggplot(bv_sample) +

aes(x = P13_CHOM1564_dax, y = P13_CHOM1564_dac) +
geom_point() +
labs(title = "(a) Estimates of the number of unemployement",

x = "DAX",
y = "DAC") +

geom_abline(intercept = 0, slope = 1) +
theme_grey(base_size = 20)

47

0

100

200

300

400

500

0 200 400 600
DAX

D
A

C
(a) Estimates of the number of unemployement

We observe some targets with very different estimates. Let us have a look at what is happening for one of
these targets represented in red in the following figure. The estimated value with DAX is equal to 674 and to
197 with DAC. In the DAX method, the main contribution to this value comes from the source represented
in violet which shares 82% of the roads represented in grey with the target.
op <- par(oma= c(3, 2, 1.5, 0), mar = c(0, 0, 0.7, 0))
plot(st_geometry(bv_sample[c(239, 241),]), lty = 2, border = "white")
plot(st_geometry(bv_sample[239,]), border = "red", add = T)
plot(st_geometry(voieries), col = "grey", add = T, lty = 2, lwd = 0.5)
plot(st_geometry(iris), border = "black", add = T)
plot(st_geometry(iris[iris$IRIS == "315554702",]),

border = "violet", add = T, lwd = 1.5)
title("(b)", cex.main = 3, line = -1)

(b)

What is happening with the DAC 2 step method? We remark in the following figure that the intersected
zone between the target in red and the source in violet does not contain a large population with regard to
the control zones represented in light blue. In that case, the source in violet will attribute the main part of
its value to the non-intersected zone with the target, which is a zone with a large population.

48

op <- par(oma= c(3, 2, 1.5, 0), mar = c(0, 0, 0.7, 0))
plot(st_geometry(bv_sample[c(239, 241),]), lty = 2, border = "white")
plot(st_geometry(bv_sample[239,]), border = "red", add = T)
plot(st_geometry(cell_200m), border = "lightblue", add = T)
text(st_coordinates(st_centroid(cell_200m))[, 1],

st_coordinates(st_centroid(cell_200m))[, 2],
paste0(cell_200m$Ind), cex = 0.5)

Warning in st_centroid.sf(cell_200m): st_centroid assumes attributes are
constant over geometries of x

Warning in st_centroid.sf(cell_200m): st_centroid assumes attributes are
constant over geometries of x
plot(st_geometry(voieries), col = "grey", add = T)
plot(st_geometry(iris), border = "black", add = T)
plot(st_geometry(iris[iris$IRIS == "315554702",]),

border = "violet", add = T, lwd = 1.5)
title("(c)", cex.main = 3, line = -1)

97
124

287

35.5

477

26

214

305332

16.5
135.5

449.5

13

205.5253190.5

205.5

4

216

80

267

644.5 83.5
383504 263

814

142.5

360504302.5

134

496.5425.5 204

282 338.5

250

1

9
167.5 260 166 73 117

40.5

399.5

17

783
29.5258

10

2

235.5 233 68 352

59

145.5166.5

6 2 15
28 4

222

124

31

320.5

10 77 185 4
2

286.5
150.5

12.5 25

104.5 34.5

341.5174.5 198

171 128.5 170 132 254.5 168 191.58.5 91.5 237 173 197.5 239 155 286 59 18

17 290 262 205 154.5
1

17 197.5

528.5 131 203.5149.5

386.5 283 66 444.5 35.5

1

52 248 1

7 56.5 76 170 290.5
202 381.5

398 371.5 67 716 8

3 2 19 138 20.5 125 350.5 79.5 1 104

4

166
18

34
46 133 95 3 135.5

76

14 3 162.5

31
17

3

68 93

8 56

222

1.5 281 421.5123.5
403.5 8 119.5

133

7

3 8
5 1

86.5 8 16 12 1

275.5

2 15 6

6 2 202

212.5569.5

23 18 92 51 249.5111.5 30 30

252 560
835.5 299 302.5191.5

537

1 8

10
5 95.5

629.5

27.5

106 327 261.5 54.5 125.5 147 269 165.5
140 11 581 382.5 370.5

6

45

7 167 120.5 48.5 55 451 208

1

144

217 225

314 23

342 242.5 171 100.5199.5 8 315.5409.5 567 50 235.5448.5429.5

3

9

109.5
152

8 102

7

229 107 205 302.5 17 297 154

16.5

19

13

79.5
121

6 3
4

15

15.5

14.5 14

4

38

14 2

450

198.5
104.5

76 4

55 78 319.5

504
137

33

186

8

10197.5 279
7

115 33

368.5

243 250

75

541.5
255

240 675.5

23

504

310

15 2
67 261

956

281

68
215

22

55

5

413

19

3

35

229

24103

60 400

220

521

216.5

8
475.5292.5 (c)

6 Regression Modelling

6.1 Construction of the covariates

We construct the covariates population density, percentage of individuals less than 18, percentage of individuals
between 18 and 40, percentage of individuals between 40 and 64, percentage of individuals above 65, percentage
of poor households, percentage of owners, and percentage of recent dwellings thanks to the variables provided
by the INSEE at the cell level by using the DAX method.

We use the estimates obtained for the extensive variables and then compute the ratio. For the small cells:
bv_sample <- bv_sample %>%

mutate(
pop_dens = Ind_dax_cells / area_dax_cells,
prop_Ind_18_40 = (Ind_18_24_dax_cells + Ind_25_39_dax_cells) / Ind_dax_cells,
prop_Ind_40_64 = (Ind_40_54_dax_cells + Ind_55_64_dax_cells) / Ind_dax_cells,
prop_Ind_up_65 = (Ind_65_79_dax_cells + Ind_80p_dax_cells) / Ind_dax_cells,

49

prop_pour_hos = Men_pauv_dax_cells / Men_dax_cells,
prop_owner = Men_prop_dax_cells / Men_dax_cells,
prop_recent = Log_ap90_dax_cells / Men_dax_cells

)

We do the same for PIP method:
bv_sample_pip <- bv_sample
bv_sample_pip <- bv_sample_pip %>%

mutate(
pop_dens = Ind_pip_cells / area_pip_cells,
prop_Ind_18_40 = (Ind_18_24_pip_cells + Ind_25_39_pip_cells) / Ind_pip_cells,
prop_Ind_40_64 = (Ind_40_54_pip_cells + Ind_55_64_pip_cells) / Ind_pip_cells,
prop_Ind_up_65 = (Ind_65_79_pip_cells + Ind_80p_pip_cells) / Ind_pip_cells,
prop_pour_hos = Men_pauv_pip_cells / Men_pip_cells,
prop_owner = Men_prop_pip_cells / Men_pip_cells,
prop_recent = Log_ap90_pip_cells / Men_pip_cells

)

We do the same for DAW method:
bv_sample_daw <- bv_sample
bv_sample_daw <- bv_sample_daw %>%

mutate(
pop_dens = Ind_daw_cells / area_daw_cells,
prop_Ind_18_40 = (Ind_18_24_daw_cells + Ind_25_39_daw_cells) / Ind_daw_cells,
prop_Ind_40_64 = (Ind_40_54_daw_cells + Ind_55_64_daw_cells) / Ind_daw_cells,
prop_Ind_up_65 = (Ind_65_79_daw_cells + Ind_80p_daw_cells) / Ind_daw_cells,
prop_pour_hos = Men_pauv_daw_cells / Men_daw_cells,
prop_owner = Men_prop_daw_cells / Men_daw_cells,
prop_recent = Log_ap90_daw_cells / Men_daw_cells

)

For the large cells:
bv_sample_big <- bv_sample
bv_sample_big <- bv_sample_big %>%

mutate(
pop_dens = Ind_dax_big / area_dax_big,
prop_Ind_18_40 = (Ind_18_24_dax_big + Ind_25_39_dax_big) / Ind_dax_big,
prop_Ind_40_64 = (Ind_40_54_dax_big + Ind_55_64_dax_big) / Ind_dax_big,
prop_Ind_up_65 = (Ind_65_79_dax_big + Ind_80p_dax_big) / Ind_dax_big,
prop_pour_hos = Men_pauv_dax_big / Men_dax_big,
prop_owner = Men_prop_dax_big/ Men_dax_big,
prop_recent = Log_ap90_dax_big / Men_dax_big

)

We do the same for PIP method:
bv_sample_pip_big <- bv_sample
bv_sample_pip_big <- bv_sample_pip_big %>%

mutate(
pop_dens = Ind_pip_big / area_pip_big,

prop_Ind_18_40 = (Ind_18_24_pip_big + Ind_25_39_pip_big) / Ind_pip_big,
prop_Ind_40_64 = (Ind_40_54_pip_big + Ind_55_64_pip_big) / Ind_pip_big,
prop_Ind_up_65 = (Ind_65_79_pip_big + Ind_80p_pip_big) / Ind_pip_big,
prop_pour_hos = Men_pauv_pip_big / Men_pip_big,

50

prop_owner = Men_prop_pip_big/ Men_pip_big,
prop_recent = Log_ap90_pip_big / Men_pip_big

)

We do the same for DAW method:
bv_sample_daw_big <- bv_sample
bv_sample_daw_big <- bv_sample_daw_big %>%

mutate(
pop_dens = Ind_daw_big / area_daw_big,

prop_Ind_18_40 = (Ind_18_24_daw_big + Ind_25_39_daw_big) / Ind_daw_big,
prop_Ind_40_64 = (Ind_40_54_daw_big + Ind_55_64_daw_big) / Ind_daw_big,
prop_Ind_up_65 = (Ind_65_79_daw_big + Ind_80p_daw_big) / Ind_daw_big,
prop_pour_hos = Men_pauv_daw_big / Men_daw_big,
prop_owner = Men_prop_daw_big/ Men_daw_big,
prop_recent = Log_ap90_daw_big / Men_daw_big

)

We then construct the covariates unemployment rate, immigration rate, percentage of farmers, percentage of
intermediate/highly qualified jobs, percentage of workers, and percentage of retired people thanks to the
variables provided by the INSEE at the iris level by using the DAC 2 step method.

We use the estimates obtained on the extensive variables and then compute the ratio.
bv_sample <- bv_sample %>%

mutate(prop_immi = P15_POP_IMM_dac / P15_POP_dac,
prop_unemploy = P13_CHOM1564_dac / P13_ACT1564_dac,
prop_csp_1 = (C15_POP15P_CS1_dac + C15_POP15P_CS2_dac) / C15_POP15P_dac,
prop_csp_2 = (C15_POP15P_CS3_dac + C15_POP15P_CS4_dac) / C15_POP15P_dac,
prop_csp_3 = (C15_POP15P_CS5_dac + C15_POP15P_CS6_dac) / C15_POP15P_dac

)

6.2 Exploratory Analysis

The correlation plot indicates that the extreme right vote is positively correlated with:

• proportion of people younger than 18,
• proportion of immigrants,
• turnout,
• proportion of workers,
• proportion of recent housing

It is negatively correlated with

• percentage of high qualified professions
• population density
• percentage of people between 18 and 40
• percentage of people up to 65

my_data <- st_drop_geometry(bv_sample[, c("taux_fn", "turnout", "pop_dens", "prop_pour_hos",
"prop_owner", "prop_recent",
"prop_Ind_18_40", "prop_Ind_40_64", "prop_Ind_up_65",
"prop_unemploy", "prop_immi", "prop_csp_1", "prop_csp_2",
"prop_csp_3"),])

M <- cor(my_data)
res1 <- cor.mtest(my_data, conf.level = .95)
corrplot(M, p.mat = res1$p, method = "color", type = "upper",

51

sig.level = c(.001, .01, .05), pch.cex = .9,
insig = "label_sig", pch.col = "white")

*

*

*

**

**

**

**

**

**

**

*** ***

*** −1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
ta

ux
_f

n
tu

rn
ou

t
po

p_
de

ns
pr

op
_p

ou
r_

ho
s

pr
op

_o
w

ne
r

pr
op

_r
ec

en
t

pr
op

_I
nd

_1
8_

40
pr

op
_I

nd
_4

0_
64

pr
op

_I
nd

_u
p_

65
pr

op
_u

ne
m

pl
oy

pr
op

_i
m

m
i

pr
op

_c
sp

_1
pr

op
_c

sp
_2

pr
op

_c
sp

_3

taux_fn
turnout
pop_dens

prop_pour_hos
prop_owner

prop_recent
prop_Ind_18_40

prop_Ind_40_64
prop_Ind_up_65

prop_unemploy
prop_immi

prop_csp_1
prop_csp_2

prop_csp_3

Remark 1: the covariates are strongly correlated, which lets us presume that the linear model should include
collinearity.

Remark 2: the relationships between the extreme right vote and the covariates are not necessarily linear.
For example, if we look at the scatter plot of the extreme right voting with respect to the unemployment
rate, the relationship is not linear.
ggplot(data = bv_sample) +

aes(x = prop_unemploy, y = taux_fn) +
geom_point() +
geom_smooth(method = "loess",

col = "red") +
labs(x = "unemployement rate", y = "XR score")

`geom_smooth()` using formula 'y ~ x'

52

10

20

30

0.1 0.2 0.3 0.4 0.5
unemployement rate

X
R

 s
co

re

Linear modelling is based on the hypothesis that covariates are supposed as linearly independent, which is
not the case here. For that reason, we will propose two regression modelling approaches:

• Linear modelling
• Regression tree

6.3 Regression modelling

6.3.1 Linear modelling

res_lm_1_big <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +
prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65,

data = bv_sample_pip_big)
res_lm_2_big <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +

prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65,

data = bv_sample_daw_big)
res_lm_3_big <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +

prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65,

data = bv_sample_big)

res_lm_1 <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +
prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65,

data = bv_sample_pip)

53

res_lm_2 <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +
prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65,

data = bv_sample_daw)
res_lm_3 <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +

prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65,

data = bv_sample)

res_lm <- lm(taux_fn ~ turnout + pop_dens + prop_pour_hos +
prop_owner + prop_recent +
prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65 +
prop_unemploy + prop_immi +
prop_csp_1 + prop_csp_2 + prop_csp_3,

data = bv_sample)

stargazer::stargazer(res_lm)

stargazer::stargazer(res_lm_1_big, res_lm_2_big, res_lm_3_big,
res_lm_1, res_lm_2, res_lm_3, res_lm)

6.3.1.1 Full Model We also compute the MSE:
round(c(

mean(residuals(res_lm_1_big) ^ 2),
mean(residuals(res_lm_2_big) ^ 2),
mean(residuals(res_lm_3_big) ^ 2),
mean(residuals(res_lm_1) ^ 2),
mean(residuals(res_lm_2) ^ 2),
mean(residuals(res_lm_3) ^ 2),
mean(residuals(res_lm) ^ 2)), 3)

[1] 17.511 15.794 15.773 16.162 15.640 15.578 11.475

6.3.2 Regression tree

my_tree <- rpart(taux_fn ~ turnout + pop_dens + prop_pour_hos + prop_owner +
prop_recent +

prop_Ind_18_40 +
prop_Ind_40_64 +
prop_Ind_up_65 +
prop_unemploy + prop_immi + prop_csp_1 +

prop_csp_2 + prop_csp_3, data = bv_sample)
fancyRpartPlot(my_tree, sub = "")

54

Table 7: Results of the linear regression

Dependent variable: Extreme Right Vote

Sources = Big cells Sources = Small cells Full model

PIP DAW DAX PIP DAW DAX DAX + DAC

turnout 0.293∗∗∗ 0.267∗∗∗ 0.249∗∗∗ 0.248∗∗∗ 0.257∗∗∗ 0.267∗∗∗ 0.194∗∗∗
(0.072) (0.058) (0.058) (0.065) (0.066) (0.065) (0.063)

pop_dens −0.0001 −0.0002∗ −0.0002∗∗ −0.0003∗∗∗ −0.0004∗∗∗ −0.0004∗∗∗ −0.0003∗∗∗
(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

prop_pour_hos 0.450 −1.165 −0.856 −7.152 −8.461 −8.676 −23.477∗∗∗
(8.157) (8.921) (8.866) (6.799) (7.582) (7.543) (8.293)

prop_owner 4.655 3.136 0.688 −2.146 −5.446 −5.887 −3.898
(3.796) (5.106) (5.090) (3.311) (3.828) (3.790) (3.380)

prop_recent 7.942∗∗∗ 9.193∗∗∗ 8.974∗∗∗ 4.082∗∗ 5.010∗∗ 5.352∗∗ −2.503
(2.363) (2.734) (2.707) (1.987) (2.261) (2.261) (2.216)

prop_Ind_18_40 −38.371∗∗∗ −45.299∗∗∗ −43.100∗∗∗ −42.835∗∗∗ −42.579∗∗∗ −40.747∗∗∗ −13.038∗
(7.950) (9.066) (9.182) (6.804) (7.395) (7.225) (7.425)

prop_Ind_40_64 −22.593 −41.592∗∗ −30.479 −39.130∗∗ −29.572∗ −26.661 −15.637
(17.958) (20.682) (20.607) (15.121) (16.615) (16.301) (14.640)

prop_Ind_up_65 −20.026∗ −13.328 −14.481 −27.081∗∗ −20.248 −17.904 −17.953
(11.755) (15.473) (15.746) (10.651) (12.277) (12.569) (11.660)

prop_unemploy −33.265∗∗∗
(9.415)

prop_immi 7.567
(9.339)

prop_csp_1 49.223∗∗
(24.657)

prop_csp_2 −25.087∗∗∗
(5.960)

prop_csp_3 34.222∗∗∗
(4.648)

Constant 18.818∗ 28.023∗∗ 26.418∗∗ 35.439∗∗∗ 32.869∗∗∗ 30.730∗∗∗ 29.907∗∗∗
(10.253) (11.612) (11.658) (9.024) (9.684) (9.368) (9.347)

Observations 199 256 256 254 256 256 256
R2 0.397 0.433 0.434 0.418 0.438 0.441 0.588
Adjusted R2 0.371 0.414 0.415 0.399 0.420 0.422 0.566
MSE 17.511 15.794 15.773 16.162 15.640 15.578 11.475

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

55

prop_csp_3 < 0.28

pop_dens >= 2887

prop_csp_3 < 0.2

prop_Ind_18_40 >= 0.35 pop_dens >= 8293

prop_unemploy >= 0.15

prop_immi >= 0.35

prop_csp_2 >= 0.14

pop_dens >= 2673

prop_csp_1 < 0.028

turnout >= 58

yes no

1

2

4

8

16 17

9

18

19

38 39 5

3

6

7

14

28

56

112 113 57 29 15

prop_csp_3 < 0.28

pop_dens >= 2887

prop_csp_3 < 0.2

prop_Ind_18_40 >= 0.35 pop_dens >= 8293

prop_unemploy >= 0.15

prop_immi >= 0.35

prop_csp_2 >= 0.14

pop_dens >= 2673

prop_csp_1 < 0.028

turnout >= 58

16
n=256 100%

14
n=183 71%

13
n=164 64%

12
n=86 34%

11
n=52 20%

13
n=34 13%

15
n=78 30%

13
n=34 13%

16
n=44 17%

15
n=26 10%

18
n=18 7%

20
n=19 7%

21
n=73 29%

16
n=8 3%

22
n=65 25%

21
n=56 22%

21
n=49 19%

19
n=21 8%

17
n=12 5%

22
n=9 4%

22
n=28 11%

26
n=7 3%

26
n=9 4%

yes no

1

2

4

8

16 17

9

18

19

38 39 5

3

6

7

14

28

56

112 113 57 29 15

pred_tree <- predict(my_tree)

MSE :
mean(residuals(my_tree) ^ 2)

[1] 8.456495

Plotting of the first and last leaf.
par(mar= c(0,0,0,0), mfrow = c(1, 2))
plot(st_geometry(bv_sample))
plot(st_geometry(bv_sample[pred_tree == max(pred_tree),]),

add = T, col = "red")
plot(st_geometry(bv_sample))
plot(st_geometry(bv_sample[pred_tree == min(pred_tree),]),

add = T, col = "red")

56

	The data
	Targets
	1st kind of sources: data at the cell level
	2nd kind of sources: data at the iris level
	Auxiliary information
	Figure 1 in the book chapter

	Point-in-polygon method
	Illustration
	Extensive variables
	Intensive variables
	Limitation of the point-in polygon method

	Areal weighting interpolation (DAW) method
	Extensive variable
	Comparaison between PIP and DAW
	Intensive variable

	Dasymetric method with auxiliary variable X (DAX)
	Extensive variables
	Comparaison between DAW and DAX
	Intensive variables
	Comparaison between DAX and DAW

	Dasymetric method with control zones
	Step 1: DAW method
	Step 2: DAX method

	Regression Modelling
	Construction of the covariates
	Exploratory Analysis
	Regression modelling

